

Advanced Solutions Group 4880 Venture Drive, Suite 100 Ann Arbor, MI 48108

Low-cost, High-capacity Lithium Ion Batteries through Modified Surface and Microstructure

Pu Zhang June 7, 2016 **Project ID: ES238**

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline **Barriers** Project start date: July 28, 2014 High energy Li-ion battery of 300 Wh/kg Project end date: July 27, 2016 Low cost, long cycle life Si anodes Percent complete: 90% are required **Partners** Budget Funded Partner: Navitas ASG Total project funding: \$1,000,000 Electrode coating and cell assembly DOE share: \$1,000,000 Argonne National Laboratory Funding 2014 - 2015: \$562,830 Material characterization & cost modeling Funding 2015 - 2016: \$437,170 A123 Systems, LLC **Cell** evaluation

• Project Goal:

 Produce a practical and economical high capacity silicon-based anode material for lithium ion batteries

• Objectives:

- Optimize the process to produce macroporous Si composite anode with >800 mAh/g and <12% ICL
- Develop the anode material with surface area <20 m²/g, tap density >0.9g/cm³ to support >4 mAh/cm² coating
- Scale up to 500g/batch
- Fabricate >2 Ah lithium ion cell
- Achieve Si-composite anode cycle life >1000 at 80% DOD

Milestones

			Months ARO														0/									
т	ТАЅК		Year 1									Year 2														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	LIIOIT
1	. Porous Si preparation																									10%
2. Si composite synthesis																								15%		
3. Conformal carbon coating																								5%		
4	. Artificial SEI coating																									13%
5	. Anode process scale-up																									15%
6	. Electrode Coating																									17%
7	. Cell assembly and test																									20%
8	. Process modeling																									5%
Milestones								1			2						3			4			5	100%		
	Milestone						Ν	Лet	ric					Da	te						St	atu	IS			
-	Anode capacity and ICL			- (-	Cap ICL ·	acit <12	ty > :%	800) m/	4h/	g		05	5/2(015	-	Ca ICL	pac . <1	ity 2%	>80	0 n	۱Ah	/g		100)%
4	2 High loading Si anode				Tap Surf Anc	der face ode	nsit e ar loa	y of ea < din	f 0.9 <20 g 4) g/ m² mA	′cm [:] /g .h/c	³ m²	08	3/2(015	-	Taj Su loa	o de rfac Idin	ensi ce a ig a	ty (rea t 4 i).9 (<2(mA	g/c) m h/c	m ³ ² /g m ²		100)%
11	3 Process scale up		>500g batch					02	2/20	016	>	>500g batch				100%										
4 Prototype Li ion cell deliverable		2 10 prismatic cells >2Ah					05	5/2(016	C	complete			100)%											
5 Cycle life demonstration		>1000 cycle at 80% DOD					08	3/2(016	i t	500 cycles at 100% DOD in small cells; 2Ah cell test is on going			75%	%											

High capacity low cost Si composite (800 mAh/g, \$35/kg)

	Objectives	2015 Results	2016 Results	Status
1	Produce macroporous Si composite anode with >800 mAh/g and <12% ICL	- Capacity >800 mAh/g - ICL 15%	- Capacity >800 mAh/g - ICL 12%	Complete
2	Develop the anode material with surface area <20 m ² /g, tap density >0.9g/cm ³ to support >4 mAh/cm ² coating	 Tap density 0.8 g/cm³ Surface area 15 – 20m²/g Support >4 mAh/cm² 	 Tap density 0.9 g/cm³ Surface area 15 – 20m²/g Support >4 mAh/cm² 	Complete
3	Process scale up (500g batch)	 200g batch (from 20g) Qualified the process steps in large scale equipments 	>500g batch	Complete
4	Prototype Li ion cell deliverable (2Ah prismatic)	Coin half cells and single- layer-pouch (SLP) Li ion cells	Slot-die coat >20m electrodes and fabricate 2Ah format cells	Complete
5	Cycle life demonstration - 500 at 100% DOD - 1000 at 80% DOD	200 – 300 cycles	500 cycles at 100% DOD (expecting)	On track

Step 1: Porous Si Preparation (via metal reduction of silica)

- Mechanical milling is an effective pretreatment to fully reduce Si oxide at low temperatures
- Fully reduction of silica at T < 800°C, which otherwise requires T > 1000°C

XRD of various samples

Thermal treatment was performed at the same conditions <800 °C XRD patterns (●) reducing metal, (■) Si, (♦) metal oxide

Step 2: Si / Alloy / Carbon Composite (Objectives 1, 2, & 5)

Step 2A: Si / Si_xM_y Alloy Composite

Step 2B: Si / Alloy /Carbon Composite

Step 3: Surface Modification (Objectives 1, 2, & 5)

• Step 3: surface modification – being developed for large scale material

Surface Treatment:

- Manage ICL
- Improve cycle life
- Improve anode slurry processability

Drocoss	Phase I		Phase II				
Process	Equipment / Method	Batch Size	Equipment / Method	Batch Size			
Porous Si Forming	HF etching		Mechano-thermal reduction				
High energy ball milling	SPEX 8000 mill	<20g	Industrial ball mill	>500g			
Surface coating	Lab scale furnace		6" tube furnace and reactor				

500g batch milestone has been met

- Qualified the low cost process to form porous Si precursors
- Qualified the large scale equipments for ball milling and surface coating processes
- 500g batch sample has been produced and qualified with comparable performance as the 20g batch sample

Process Scale-up (Objectives 3)

- Electrode fabrication
 - Si Anode: 92% Si composite / 1.5% carbon black
 / 6.5% Li-PAA; porosity 35%
 - NCM Cathode: 93% NCM 523 / 3% carbon black / 4% PVDF; porosity 30%
 - Loading 3.0 mAh/cm² (reversible) and A/C = 1.1
- Cell assembly:
 - Single-layer-pouch cell (active area: 47 cm²)
 - 20um PE separator and proprietary electrolyte
- Cycle life test :
 - 4.2 3.2V, +0.5C / -0.5C, room temperature

Anode	Capacity (mAh/g)	ICL of Composite	Tap Density of Composite (g/cm ³)
500 g batch	900 - 1000	11%	0.9
20 g batch	900 - 1000	11%	0.9

Pilot scale sample is comparable to the lab sample

- Program goal:
 - 1000 cycle at 80% DOD (or 500 cycles at 100% DOD)
 - also a USABC goal for EV batteries
- Systematic optimization for performance improvement:
 - Material level: micro-structure, alloy protection, carbon buffering, surface treatment
 - Electrode level: active components, carbon, binder, slurry mixing, coating condition, electrode thick/porosity
 - Cell level: separator selection, cathode development, electrolyte development / optimization, cell design
 - System level: formation protocol, mechanical and thermal management

Conditions

- Si composite capacity (Grade)
 - "0" 950 mAh/g
 - "I" 800 mAh/g
 - "II" 675 mAh/g
 - "III" 550 mAh/g
- Si Anode
 - 92% active/ 1.5% carbon / 6.5% Li-PAA
 - Porosity 35%
- Cycle life test :
 - Li half cell
 - Voltage 0.7 0.01V vs Li/Li⁺
 - Rate +0.5C / -0.5C

Cycle Number

Balance of Energy and Life

- Electrode fabrication
 - Si Anode: 92% Si composite / 1.5% carbon
 black / 6.5% Li-PAA; porosity 35%
 - Si composite capacity 800 mAh/g
 - NCM Cathode: 93% NCM 523 / 3% carbon black / 4% PVDF; porosity 30%
 - Loading 3.0 mAh/cm² and A/C = 1.1
- Cell assembly:
 - Single-layer-pouch cell (active area: 47 cm²)
 - 20um PE separator and proprietary electrolyte
 - 300 Wh/kg if in EV format (cell level)
- Cycle life test :
 - 4.2 3.2V (85% DOD)
 - +0.5C / -0.5C

Cycle life of >500 is expected in a Li ion cell

Pilot Scale Coating and Prismatic Cell Fabrication (Objective 4)

- Powder properties are similar to graphite
- Standard slurry mixing and electrode coating conditions
- Prismatic Li ion cells (>2Ah) assembly in May 2016
- Performance demonstration in August 2016

Responses to Reviewers' Comments

2015 AMR comments	Responses							
Cost: "HF may not be the best method use" "the title contains low cost, but no information was found"	 We have developed a non-HF method to synthesize porous Si which is economically efficient and environmentally friendly (Slide 7) Low cost comes from both raw materials and processes (Slides 5, 8 – 11) Micron-sized Si precursor <\$2/kg All the processes are industrially scalable No expensive steps such as vapor deposition, nano fiber growth The cost model shows <\$35/kg for the Si composite material 							
Cycle life "using coin cells as proof is good, but need full cell data" "the main focus of the future work has to be improving cycle life" "4 mAh/cm ² is a large coating, may need lower for EV"	 The coin cells are used as fast screening tools in the program. The materials are evaluated in full cells following the initial screening (Slides 11 – 13) Electrodes are coated with a roll-to-roll slot-die coater and large format full cells (2Ah) are assembled as the final delivery (Slide 14). Cycle life will be demonstrated in the large cells The electrode loading has been designed to 2.5 – 3.0 mAh/cm² for EV relevant cells 							
Collaboration "project team also needs high-energy cathode collaboration" "collaborating with other partners, particularly when it comes to the artificial SEI work" "It is unclear how and if they (the partners) will support this project, or if they would be appropriate at this stage of development"	 For our internal high energy cell development, we have collaborated with several companies for high-energy cathode materials including Toda America, BASF and TIAX We are working with ANL to characterize the anode (SEI) structures and will improve the structure by consulting the partner When qualified large scale process, we plan to send the needed powder (typically >2kg) to A123 Systems to coat anode in its pilot coating line and assemble/test prototype Li ion cells in its development facility (Slide 16) 							

- Navitas ASG is a sub-contractor to provide electrode fabrication, cell assembly and cell testing labor in support of the program. ASG is a wholly-owned subsidiary of Navitas Systems
 - a funded subcontractor
- We are working with Argonne Nation Laboratory (ANL) to characterize the anode structures and cost modeling
 - partner (special test and modeling)
- For our internal high energy cell development, we have collaborated with several companies for high-energy cathode materials including Toda America, BASF and TIAX; anode powder also is scheduled to ship to TIAX (in April 2016) to match its high energy cathode.
 - funded by Navitas
- When qualified large scale process in May, we plan to send the needed powder (typically >2kg) to A123 Systems to coat anode in its pilot coating line and assemble/test prototype Li ion cells in its development facility.
 - in-kind

- Scale up the process beyond 500g batch
 - 500g batch process has been developed and qualified
 - Next level production capability is needed (e.g., metric tons)
 - Establishing cost modeling based on raw materials and processes
 - Seeking industrial partners for collaborations (licensing, JD)
- Achieve a cycle life of 1000
 - Need to demonstrate the cycle life in the newly assembled large format prismatic cells in addition to the lab scale cells
- Identify advantages and potential limitations of the new Si material and the high energy batteries based on such
 - Dimensional and thermal stability
 - Abuse tolerance
 - Other applications by balancing energy and cycle life
 - Consumer electronics
 - Specialty military devices

Under the program

- Demonstrate cycle life in a large format (>2 Ah) prismatic cells as a final delivery
- Conduct critical performance evaluations on the cells:
 - Dimensional stability (swelling, gassing) during cycling
 - High temperature storage
 - Abuse tolerance (e.g., over-charge, over-discharge, short-circuit, and nail-penetration)
- Establish cost model for the Si material
 - DOE BatCap cost model
- Complete the program and submit final report

Internal investment

- Provide anode powder and/or coated anode to potential partners for external evaluation
- Identify 2 3 key industrial partners to commercialize the material licensing / JD
- Evaluate the anode applications in other areas than EV
 - Consumer electronics
 - Military specialty devices
- Continue to improve the performance / lower the price
 - Evaluating / selecting advanced electrolytes (cycle life, high temperature, safety) and advanced cathode
 - Qualifying lower cost raw materials and processes

Summary

Relevance

Produce a practical and economical high capacity silicon-based anode material for lithium ion batteries

- >800 mAh/g and <\$35/kg
- Scale up to at least 500g/batch
- Fabricate >2 Ah lithium ion cell
- Achieve Si-composite anode cycle life >1000 at 80% DOD

Approach

Develop a low lost micron-sized Si material by combination of microstructure design and surface modification

- Porous Si core: accommodates the volume change during Si cycling
- Protection shell: limits surface Si volume change and keeps the large volume change within the Si core
- Surface coating: reduces ICL and improves the cycle life

Technical Accomplishments

- Developed a high energy and low cost Si composite anode of >800 mAh/g and <\$35/kg
- Scaled up the powder production to >500g /batch; all the processes are industrially scalable
- Fabricated electrode coating in pilot scale coater and assembled large format Li ion cells at 2Ah
- Demonstrated long cycle life in Li ion cells and large cell demonstration in on going

Future Work

- Demonstrate cycle life in 2Ah cells
- Conduct cost analysis
- Submit final report
- Identify potential market areas and commercialization partners