

Low-Temperature Gasoline Combustion (LTGC) Engine Research – Previously known as HCCI / SCCI –

John E. Dec

Jeremie Dernotte and Chunsheng Ji

Sandia National Laboratories

June 8, 2016 – 9:00 a.m.

U.S. DOE, Office of Vehicle Technologies Annual Merit Review and Peer Evaluation

Program Managers: Gurpreet Singh & Leo Breton Project ID: ACE004

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

<u>Timeline</u>

- Project provides fundamental research to support DOE/Industry advanced engine projects.
- Project directions and continuation are evaluated annually.

Barriers

- Rapid control of LTGC / HCCI combustion timing
- Spark-Assisted LTGC / HCCI
- Improved stability / robustness of LTGC combustion
- Advanced fuel-injection strategies
- Improved understanding of LTGC fundamentals

<u>Budget</u>

 Project funded by DOE/VT: FY15 – \$680k
 FY16 – \$600k

Partners / Collaborators

- <u>Project Lead</u>: Sandia \Rightarrow John E. Dec
- Part of Advanced Engine Combustion working group – 15 industrial partners
- General Motors in-depth collaboration
- Cummins spark-plug cylinder heads
- LLNL support kinetic modeling
- Co-Optima Fuels project
- Chevron advanced fuels for LTGC
- Sandia LDRD fuel injection

Objectives - Relevance

<u>Project objective</u>: to provide the fundamental understanding (science-base) required to overcome the technical barriers to the development of practical LTGC / HCCI engines by industry.

FY16 Objectives \Rightarrow address barriers, particularly Controls and Robustness

- Performance mapping with new low-swirl, spark-plug capable cylinder head: Compare thermal efficiency (TE) & load range with data from old head.
- <u>Evaluate performance with RD5-87</u> (typical regular 87 AKI, E10 gasoline) compared to Tier-2 certification gasoline (CF-E0) for premixed (PM) fueling and with partial fuel stratification (PFS).
- <u>CA50 control and improved robustness</u> using Double-DI PFS (DDI-PFS) \Rightarrow Determine the potential for CA50 control and improved EGR tolerance.
- <u>Initial studies of Spark Assist (SA)</u>: Determine CA50 control and intaketemperature (T_{in}) tolerance at selected conditions.
- <u>Support Modeling</u>: Chemical-kinetics at LLNL and related RCM experiments at ANL, and CFD modeling at GM.

Response to Reviewer Comments

- Reviewers made many positive comments.

 We thank the reviewers
- Several comments indicated \Rightarrow focus less on high efficiency and high loads and more on ways control combustion timing and operation at lower boost.
 - We have accelerated plans to shift research in these directions, as reflected in the FY16 objectives (prev. slide) and explained in greater detail below.

Specific comments

- 1. Accelerate installation of spark-plug head and studies of spark assist (SA)
 - Several mechanical/technical problems were encountered that delayed installation of head.
 - Head was installed latter part of FY15, debugged. Initial studies of SA have been conducted.
- 2. Studies of DDI-PFS should include CA50 control methodologies.
 - DDI-PFS has strong potential for rapid CA50 control and for increased robustness.
 ⇒ We have shifted the focus of DDI-PFS studies to these objectives.
- 3. Concerns that high boost can be difficult with LTGC
 - **PFS** requires that fuel autoignition be ϕ -sensitive \Rightarrow typically greater at higher boost.

 - New studies have been conducted at lower boost \Rightarrow additional low-boost studies planned.
- 4. Need to show Combustion Noise Levels (CNL) as well as Ringing Intensity (RI)
 - CNL values are presented and discussed.

CRF.

Approach

<u>Overall Approach</u>: Use a combination of metal- and optical-engine experiments, analysis & modeling to build a comprehensive understanding of LTGC processes.

Metal Engine

- Modify new cylinder heads to install spark-plug (SP) ports.
 - > Work with Cummins on design, SP port installation, & new pressure transducer (PT) port
 - > In-house modifications to SP-head for Bosch HDEV 5.1 GDI injector (300 bar capable).
- Well-controlled experiments to 1) evaluate SP-head performance, and investigate:
 2) <u>DDI-PFS</u>: develop methods of varying fuel stratification to obtain injection-timing control of CA50, increased CA50 tolerance, and improved stability.
 - **3)** <u>Spark-Assist</u>: systematically adjust spark time for CA50 ctrl. & T_{in} compensation.
- **Optical Engine** adaptation of SP-head and installation will follow.
- Fuels Worked with GM to specify a research-grade E10 regular gasoline, RD5-87, and compare performance with CF-E0. (Prior to recent E10 Tier 3 cert. gas.)
- Analytical Techniques Apply our recently developed techniques to understand:
 1) changes in energy-loss distribution, and 2) noise levels, CNL
- **Computational Modeling**: **1)** Collaborate with LLNL on kinetic mechanism for RD5-87, and **2)** with GM on CFD modeling for improved understanding of PFS.
- Combining techniques provides a better understanding and more-optimal solutions.
- Transfer results to industry: 1) physical understanding, 2) improved models

Approach – Milestones

Complete installation and initial testing of new low-swirl cylinder head with spark-assist capability.

• December 2015

Map performance of SP-head (Head #2) over a range of operating conditions and compare with previous head (Head #1).

$\sqrt{}$

March 2015

Complete installation of spark ignition system and initial study of sparkassisted (SA) LTGC.

\checkmark

June 2016

Present an overview of project accomplishments and directions at the DOE Annual Merit Review.

• September 2016

Map the operating range for effective DI-PFS with E10 regular gasoline at a compression ratio of 14:1 (plan to switch soon from current CR = 16:1 to 14:1).

Sandia LTGC Engine Laboratory

NO_x & soot emiss. more than 10x below US-2010

CRF.

Overview of Accomplishments

- Completed installation and shakedown testing of new spark-plug capable, low-swirl cylinder head (Head #2).
- Conducted performance mapping of Head #2 and comparisons with Head #1 for both premixed & Early-DI fueling ⇒ TE, high-load limits, CNL, etc.
 - Applied energy-loss analysis tools (developed in FY15) to understand differences.
- Evaluated performance of a research-grade regular 87-AKI, E10 gasoline (RD5-87) and compared to high-octane, E0 certification gasoline (CF-E0).
- Demonstrated CA50 control over a wide range by varying injection timing for a DDI-PFS fueling method:
 - Retard late-DI timing ⇒ incr. strat. ⇒ adv. CA50
- Showed that DDI-PFS can also substantially increase robustness (EGR & CA50 tolerance) and increase stability for an extended load range.
- Demonstrated Spark-Assisted (SA) LTGC for CA50 control and increased tolerance to variation in T_{in} (compensate for T_{in} variation).
- Collaborated with LLNL on development of a kinetic mechanism for RD5-87 and related RCM measurements at ANL, and with GM on CFD modeling.

Low-Swirl Spark-Plug Head ⇒ "Head #2"

- Worked with Cummins to design SP capability and fabricate.
 - SP port in location of original
 D = 10 mm PT (AVL QC34C)
- Install new PT port through fire-deck
 - − Very small, D = 5 mm (AVL GH15D) →
 - For CI studies, 2nd GH15D in SP port.
- Problems w/ small PT, not all are durable.
- Both heads are low-swirl, but:
 - Head #1, custom anti-swirl plate directs helical port flow against tangential port to create a counter-swirling flow.
 - <u>Head #2</u>, ports designed to give low swirl \Rightarrow thought to produce tumble flow.
- Central-mount Bosch HDEV 5.1 GDI injector \Rightarrow 300 bar capable.
- Same valves / camshaft / rocker assembly for both heads.

Thermal Eff. (PM) – Spark-Plug Head #2

97.0

96.5

96.0

95.5

0.25

0.30

0.35

Charge-Mass Equiv. Ratio [ϕ_m]

- Initial testing of Head #2 used:
 - CF-E0 \Rightarrow large database for Head #1
 - Premixed (PM) fueling to eliminate differences due to fuel inject & mixing.
- $\phi_m \ge 0.34$: TE with Head #2 is just slightly lower (~0.2 %-units).
- ϕ_m < 0.34: greater TE loss w/ Head #2
- Cause is not well understood:
 - Combst. Eff (CE) and CA50 are similar
 - EGR requirement & γ also similar
- Analysis shows increased HT with Head #2 is the most likely explanation.
 - Possibly high-tumble flow breaks down near TDC and increases HT.
 - Greater at low ϕ_m since CA50 is closer to TDC.
- Is counter-swirl better for low HT?

CA50

368

366

364

362

0.45

Head #1, CE

Head #2, CE

0.40

Head #1, CA50

Head #2, CA50

Thermal Eff. (Early-DI) – Spark-Plug Head #2

Compare heads, Early-DI @ 60° CA

- $T_{in} = 40^{\circ}$ C vs. 60°C for Premixed
- Injection Press = 120 bar, both heads
- Overall TE higher than PM mainly due to lower $T_{charge} \Rightarrow$ higher γ & lower HT.
- $\phi_m \leq 0.4$: Trends similar to PM, but
- φ_m > 0.4: TE of Head #2 falls below Head #1, rapid drop in CE ⇒ higher CO
- Increased CO at low and high φ_m indicate a less well-mixed charge with Head #2.
 - Low ϕ_m overly lean zones make CO
 - High ϕ_m rich zones make CO high EGR
- Counter-swirl improves mixing for Early-DI fueling with Head #1.

High Load Limit as a Function of Boost

Injection-Timing/PFS to Control LTGC

- If the fuel's autoignition timing varies with the local in-cyl. ϕ_m , said to be ϕ -sensitive \Rightarrow richer regions autoignite faster.
- Partial fuel stratification (PFS) can be used to provide several benefits.
 - Reduced HRR for higher loads & higher TE. \Rightarrow Shown in previous years.
 - <u>Combustion-timing control</u>
 - <u>Increased robustness</u>, i.e. tolerance to variation in EGR and CA50
- Std-PFS = most Premixed + late DI
 Double-DI PFS = most Early-DI + late DI
 ⇒ late-DI timing & fraction adjusts strat.
- For what P_{in} range are fuels φ-sensitive?
 ⇒ Direct measurement very tedious.
- Use CA50 adv. for RI = 5 MW/m² with std-PFS vs. PM as a measure of φ-sensitivity.

- Here std-PFS = 90% PM + 10% at 310° CA.

Injection-Timing/PFS to Control LTGC

- If the fuel's autoignition timing varies with the local in-cyl. ϕ_m , said to be ϕ -sensitive \Rightarrow richer regions autoignite faster.
- Partial fuel stratification (PFS) can be used to provide several benefits.
 - Reduced HRR for higher loads & higher TE. \Rightarrow Shown in previous years.
 - <u>Combustion-timing control</u>
 - <u>Increased robustness</u>, i.e. tolerance to variation in EGR and CA50
- Std-PFS = most Premixed + late DI
 Double-DI PFS = most Early-DI + late DI
 ⇒ late-DI timing & fraction adjusts strat.
- For what P_{in} range are fuels φ-sensitive?
 ⇒ Direct measurement very tedious.
- Use CA50 adv. for RI = 5 MW/m² with std-PFS vs. PM as a measure of φ-sensitivity.

- Here std-PFS = 90% PM + 10% at 310° CA.

• Both fuels ϕ -sensitive from $P_{in} = 2.4-1.3$ bar \Rightarrow RD5-87 more ϕ -sensitive, all ϕ_m s & P_{in} s.

CA50 Control with Injection-Timing

- Apply Double-DI (DDI) PFS to control CA50.
- Procedure:
 - 1. Set initial conditions \Rightarrow adjust CA50 to give RI=2.5 MW/m² for single, Early-DI injection.
 - 2. Switch to DDI with 70% Early-DI at 60°CA & 30% late-DI with variable timing (70/30%).
 - 3. Hold EGR and T_{in} constant while sweeping late-DI timing.
- Late-DIs from 200 280° CA retards CA50 compared to Single-DI at 60°CA (S-DI-60).
 - Indicates better mixing than S-DI, which already gives some PFS. \Rightarrow RI < 2.5 MW/m²
- Late-DIs from 280 300° CA advance CA50 significantly due to greater stratification.
 ⇒ RI = 2.3 6.1 MW/m²
- **CA50 was adjusted 6.7° CA** with 70/30% $(4.5^{\circ} \text{ COV-IMEP}_{g} = 1.9\% \text{ to } \text{RI} = 5 \text{ MW/m}^{2})$
- With DDI-80/20%, CA50 ctrl. range 8.6° CA
- CNL trend is similar to RI ⇒ below upper range ¹⁰/₂ for diesels for most of the sweep, RI ≤ 3.5 MW/m².

Increasing Robustness with DDI-PFS

Increasing Stability with DDI-PFS, P_{in} = 1.6 bar

- Both Head #1 and Head #2 show reduced stability for Early-DI (S-DI-60) at P_{in} =1.6 basility Cause is not understood.
- Maximum fueling rate (φ_m) is significantly reduced compared to PM or S-DI-60 at other P_{in}s.
 - Becomes unstable if ϕ_m is increases, and quickly runs away to knock or misfire.
- With RD5-87, max. φ_m with S-DI-60 is even lower than with CF-E0.
- Apply DDI-PFS with an relatively early "late-DI" timing ⇒ 80% at 60° + 20% at 200°CA
- DDI-80/20%-200 greatly increases stability, allowing a substantial load increase.
 ⇒ φ_m increased from 0.34 to 0.42
- Moreover, still stable at $\phi_m = 0.42$, so further increases are possible.
- Even greater increases may be possible with optimization of DDI fueling strategy.

Spark-Assist for LTGC Control, P_{in} = 1 bar

- Spark-assist (SA) is a promising control method, P_{in}=1 bar & lower boost (limit=?)
- Complements injection-timing/PFS control at higher P_{in} ⇒ fuel is φ-sensitive

<u>Robustness</u>: ϕ = 0.42, PM fueling

- For CI only (no SA), $\Delta T_{in} = 3.7^{\circ}C$ from RI = 5 MW/m² to COV-IMEP_g = 2%
 - ΔT_{in} = 3.7°C gives a $\Delta CA50$ = 7° CA
- For SA + CI, can reduce T_{in} & maintain CA50 and RI by advancing spark-timing.
 - Limited by large cycle-to-cycle variations;
 COV suddenly becomes >> 2%.
 - > Variability in early-flame propagation
 - $-\Delta T_{in} = 21^{\circ}C$
- Spark assist greatly increases tolerance to T_{in} variation, from 3.7 to 21°C.
- No significant change in CA50, RI, or CE. Slight decrease in NOx ⇒ lower T_{in}

Flame Propagation Effect on HRR, $\phi = 0.42$

First part of HR associated with flame propagation contributes a significant fraction of the total HR.

Up to about 15%

- Compression heating caused by the flame combustion appears to compensate for decrease in T_{in}
 - Effect is similar to the ITHR for boosted operation with CI.
- Can the flame propagation allow CA50 to be retarded further while maintaining robust combustion (COV-IMEPg < 2%)?
- How much control over CA50 does SA provide?

CA50 Control with Spark Assist

Spark timing swept at two T_{in}s:

- **117°C** \Rightarrow if no spark, COV-IMEP_g > 5%
- **107°C** \Rightarrow if no spark, no combustion
- Retard CA50 by retarding spark timing, from RI = 5 MW/m² to COV-IMEP_q = 2%.
- T_{in} = 117°C: CA50 range = 6.5°CA — 0.8° ∆CA50 / 1.0° ∆spark-timing
- T_{in} = 107°C: CA50 range = 2.4°CA
- CA50 range for acceptable SA combustion is smaller for lower T_{in}.
- At these conditions: Flame propagation with SA does not allow CA50 to be more retarded than for CI-mode w/o SA (374° CA).
 - Pure CI-mode, has virtually the same CA50 range = 6.4°CA.
- But Spark-Assist gives rapid control.

Reminder:

- T_{in} = 123°C for no spark, RI = 5
- Lowest T_{in} with spark = 102°C
- Max. CA50 retard w/o spark = 374° CA (limited by COV-IMEPg = 2%)

CRF.

Collaborations

- Project is conducted in close cooperation with U.S. Industry through the <u>Advanced Engine Combustion (AEC) / HCCI Working Group</u>, under a memorandum of understanding (MOU).
 - Twelve OEMs, Three energy companies, Six national labs, & Several universities.
- <u>General Motors</u>: Bimonthly internet meetings \Rightarrow in-depth discussions.
 - GM provided 300-bar Bosch HDEV5.1 GDI injector and spark-ignition system.
 - Provide data to GM on boosted LTGC and for modeling PFS-LTGC.
- <u>Cummins, Inc.</u>: Discussions and guidance on working with new low-swirl, spark-plug cylinder heads (Head #2), potential acquisition of Head #3.
- <u>LLNL</u>: Support development and validation of chemical-kinetic mechanism for RD5-87 (87-AKI, E10 gasoline) and related RCM measurements at ANL.

DOE-OVT project is also leveraged through three related research efforts

- <u>Co-Optima Fuels Project</u>: **Funds-in project** of advanced fuels containing a significant renewable fraction for boosted SI and low-T combustion engines.
- <u>Chevron</u>: **Funds-in project** on advanced petroleum-based fuels for LTGC.
- <u>Sandia LDRD</u>: **Funds-in project** on fuel injection.

Future Work

- Continue to focus efforts on <u>combustion-timing control & improved robustness</u>, with an emphasis on lower boost $(1.0 \le P_{in} \le 2.0 \text{ bar})$.
- Use RD5-87 gasoline (regular E10) for now, and reduce CR to 14:1 ⇒ should increase operating range with RD5-87 and more in-line with OEM targets.
 - Map engine performance for CR = 14:1 w/ RD5-87 (will reduce TE 1.0 1.5 %-units)

DDI-PFS with Variable Inj. Timing: \Rightarrow CA50 control & multiple other benefits

- Determine the range of conditions for which DDI-PFS can be applied effectively \Rightarrow range of P_{in} (down to 1.3 bar?), fueling rates (ϕ_m), and speed effects.
- Investigate various fueling strategies to improve PFS performance and extend range of application ⇒ vary late-DI timing & fraction, multiple injections, etc.
 - Image fuel distributions in optical engine to guide strategies.
 - Potential of 300 bar GDI injector to improve PFS and its operating range.

Spark-Assisted (SA) LTGC: \Rightarrow CA50 control, etc.

- Map out range of conditions for effective SA-LTGC with CR = 14:1.
 - Determine benefits at P_{in} = 1.0 bar, and find max. P_{in} for effective SA.
 - Investigate effect of DI fueling and PFS, speed effects, potential to extend load.

<u>Continue to support of LTGC/HCCI modeling</u>: Provide data, analysis, and discussions to support kinetic modeling at LLNL, and CFD modeling at GM.

Summary

- A new spark-plug capable, low-swirl cylinder head has been installed, and it's combustion performance characterized.
 - Overall performance is similar to previous head, with two exceptions:
 - 1) For PM fueling, TE is lower by 0.2 1.0%-units, due to increased heat transfer.
 - 2) For early-DI fueling, TE is also reduced at low and high fueling rates due to reduced combustion efficiency caused by less complete fuel/air mixing.

- High-load limits and CNL are similar for both heads, both PM & DI fueling, all $P_{in}s$.

- Both CF-E0 & RD5-87 are ϕ -sensitive for $P_{in}s$ down to at least 1.3 bar, indicating that the benefits of PFS can be obtained \Rightarrow RD5-87 better at lower $P_{in}s$.
- Showed <u>injection timing can control CA50 up to 8.6°CA</u>, from strong knock to near misfire, as part of DDI-PFS fueling strategy ⇒ ultra-low NOx & soot.
 - Retard the late-DI timing ⇒ increases stratification ⇒ advances CA50
- Showed that <u>DDI-PFS substantially increases the allowable CA50 range</u> from knock to near misfire.
 ⇒ It can also increase stability for a significant extension of the load range.
- <u>Spark-Assist</u> was found to be <u>effective for CA50 control & increased T_{in} tolerance</u> for $\phi > 0.36$ at <u>P_{in} = 1 bar</u>. \Rightarrow Complements DDI-PFS, which works P_{in} \ge 1.3 bar.
- Collaborated with LLNL on development of a kinetic mechanism for RD5-87 and supported related RCM measurements at ANL, and with GM on CFD modeling.

Technical Backup Slides

COMBUSTION RESEARCH FACILITY

Collaboration: Kinetic Mechanism for RD5-87

- RD5-87 is a research-grade 87-AKI, E10 regular gasoline with tightly controlled specifications. ⇒ Representative of market fuels.
- Accurate chemical-kinetic mech. will be valuable for research groups & industry.
- Collaborate with LLNL (W. Pitz & M. Mehl) to support their development of a kinetic mech. for RD5-87, and support related RCM measurements at ANL.
- **SNL:** Engine data recently acquired for RD5-87 for fully premixed operation over a wide range of P_{in} and fueling rates (ϕ_m).
 - Data to be provided to LLNL for mechanism tuning and validation.
 - Provided fuel to ANL for RCM studies.
 - Discussions with LLNL and feedback on mechanism performance for further improvement.
- LLNL: Proposed a chemical-kinetic mechanism based on a 5-component surrogate, matching compositional & octane properties. ⇒ will tune and validate based on SNL engine data and ANL's RCM data as available.
- **ANL:** RCM data on RD5-87 autoignition.

LLNL proposed surrogate for RD5-87