

A Closed Loop Process for the Endof-Life Electric Vehicle Li-ion Batteries

Yan Wang (P.I.), Zhangfeng Zheng, Qiang Wang

Organization: Worcester Polytechnic Institute

2016 DOE Annual Merit Review

Date: June 6~10, 2016

Project ID #: es293

Overview

Timeline

- Project start date: Feb 2, 2016
- Project end date: Jan 15, 2018
- Percent complete: 10%

Budget

- Total project funding: \$1,024,740
 - DOE share: \$512,370
 - Contractor share: \$512,370
- Funding for FY 2016: \$344,505

Barriers

- Barriers addressed
 - Cost
 - Performance

Partners

- Interactions/ collaborations:
 A123 Systems, Argonne
 National Laboratory, General
 Motors, Ford, FCA, SNT
- Project lead: WPI

Relevance and Project Objectives

- Recycle multiple 10 kg size batches of end of life EV batteries consisting of different incoming cathode chemistries
- Produce cells of a single chemistry that could be used in a PHEV battery, to be tested according to USABC's PHEV test methods
- Improve the performance of the recovered cathode materials so that they exhibit performance on level with current commercial materials
- Recycle other materials including steel, copper, aluminum, etc.

Milestones

	Timeline (months)- 2 Year Duration							
Milestones	Q1, Yr1	Q2, Yr1	Q3, Yr1	Q4, Yr1	Q1, Yr2	Q2, Yr2	Q3, Yr2	Q4, Yr2
1:Improve electrochemical performance using 1 kg batches								
1.1 Optimize NMC111 synthesis parameters								
1.2 Improve lithium and cathode material recovery rate								
1.3 Electrodes Development								
2: Scale Process to 10 kg batch size								
2.1 Verify the state of health of spent batteries								
2.2 Scale process to 3 kg batch size								
2.3 Determine failure mechanism of cells from 3 kg batc	h							
2.4 Scale process to 10 kg batch size								
3:Produce 200 2Ah cells from recycled materials								
4: Fabricate 25Ah cells from recycled materials								
Final Report								

Approach: a Close Loop Process

Spent EV battery pack

Shredded pack

Recovered cathode powder

Advantages:

- Any lithium Ion battery
- Any size
- Any shape
- No sorting
- Synthesize new LiNi_xMn_yCo_zO₂ directly
- Ratio of Ni, Mn and Co can be specially tailored to customer demands

Technical Accomplishment and Progress

рН	Molar ratio of NH_4OH to MSO_4	Stirring speed (rpm)	Precursor tap density (g/cm³)	Cathode tap density (g/cm³)
9.8	1	350	0.85	1.44
9.8	0.4	700	1.2	1.9
10.2	1	750	1.03	1.55
10.2	2	750	1.01	1.51
10.8	1	750	0.9	1.49
10.0	0.5	750	1.37	2.02
10.0	1	750	0.98	1.58
10.0	0.25	750	1.58	2.38

All above experiments are conducted with virgin chemicals.

Parameters are optimized to obtain high tap density precursor (Ni_{1/3}Mn_{1/3}Co_{1/3}(OH)₂) and cathode (LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂) powders.

Synthesized Ni_{1/3}Mn_{1/3}Co_{1/3}(OH)₂

- WPI
- High tap density, uniform spherical precursor powder.
- With the experimental progress, the particles become 7 spherical.

Synthesized LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ Shows Good Performance

- Highly uniform cathode powder
- Good electrochemical properties

0.1C, half cell

Particle Nucleation and Growth Mechanism

Nucleation and growth mechanism of $Ni_{1/3}Mn_{1/3}Co_{1/3}(OH)_2$ is proposed.

Recycling Process Has Been Developed

Recycling process is developed to offer a close loop process for the end of life EV batteries.

Collaboration and Partners

Fabricate commercial cells

Disassemble EV battery packs

Evaluate cells fabricated with recycled materials

Provide battery packs

Remaining Challenges and Barriers

 Cathode material performance is slightly lower than the commercial materials

Working on the parameters for co-precipitation and sintering

Recovery efficiency is less than our target (>80%).

Lithium: optimize the water evaporation and try to use lithium hydroxide to adjust pH number

Ni, Mn, Co: optimize the pH number

Scale up
 Scale up the process from 1kg to 10kg

Proposed Future Work

- Compare the discharge methods
- Receive spent GM and FCA EV battery packs from SNT
- Further optimize the precursor synthesis
- Conduct the entire recycling process with GM and FCA battery packs
- Deliver material to A123 Systems for cell fabrication

Summary

- A new technology has been proposed and developed by the researchers at WPI which is capable of recovering LiNi_xMn_yCo_zO₂ cathode material.
- The recycling technology offers a close loop process and can recycle Li-ion batteries with any shape, size and chemistry and sorting is not needed.
- Ni_{1/3}Mn_{1/3}Co_{1/3}(OH)₂ has been optimized and high tap density, uniform spherical shape particles have been synthesized.
- The synthesized LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ shows promising material and electrochemical properties.

