

2015 DOE Vehicle Technologies Program Review Presentation

Miltec UV International, LLC

Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-ion Battery Electrodes

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Project Timeline:

Start Date: 10/01/2011End Date: 11/30/2015Percent Complete: 90%

Project Budget DOE Share: \$4,572,709 Miltec Share: \$1,143,299 Total Project Funding: \$5,716,008 FY11 Funding \$1,392,260 FY12 Funding: \$2,658,811 FY13 Funding: 521,638

Project Goal:

Demonstrate utilization of UV curable binder to produce LIB with performance equal to or greater than PVDF baseline and reduce electrode manufacturing cost by 50%.

Partners:

UV Battery Electrode Process

- Start with liquid UV curable mixture (oligomers, monomers, photoiniators)
- Add carbon for conductivity and active material that produces an electrode potential

- Apply liquid coating
- UV cure liquid slurry to solid electrode

UV vs Conventional

- •Instant UV curing reduces space, capital, and operating costs
- •One single side UV system @ 46 m/m (150 fpm) has output of 4 conventional systems @ 11 m/m (37 fpm) or 2 conventional systems at 22 m/m (74 fpm)

UV Curing

Miltec's UV Electrode Coating Process is smaller, simpler, and can reduce manufacturing expenses by 80%

Major Milestones

Milestone	Date	Status
Deliver Baseline Cells to INL	Mar 2012	Complete
Finalize UV Binder for Interim Cell Anodes	July 2013	Delayed
Deliver Interim Cells to INL	Jan 2014	Complete
Go-No-Go Decision	Nov 2013	Complete
Deliver Final Cells to INL	Oct 2015	Pending
Deliver Cost Savings Model	Oct 2015	Pending

Electrochemical Testing Recent Results

Typical Coating, Curing, and Testing Conditions

- 20-75 micron coating before curing and calendering, single layer
- 50 –325 fpm (15- 100 Meter/Min); 1, 2, or 3 UV lamps
- 90% NMC, 3-5% UV curable binder, 5-7% Carbon
- Nominal 1200-2000 lb/in² calendering
 - Nominal 5.5 15 mg/cm2 loading
 - Porosity calculated, nominal 30-42%
- Coin cell, half and full; pouch cell, full

UV binder withstands voltages beyond carbonate electrolyte

NMC (111) half cell with UV Binder: Miltec 497

Sample: 87% NMC, 5% carbon, 8% UV binder

Current developments: "FAST" and "SLOW" formulas

Comparison of "FAST" and "SLOW" formulas:

FAST:

- Cure with excellent touch and rub adhesion after cure up to 328 fpm Can be cured with only 3% UV binder
- lower initial capacity and capacity retention (after 50 cycles)

"SLOW":

- Excellent rub, bend and touch adhesion; excellent in electrolyte.
- Excellent initial capacity and retention (after 50 cycles)
- Slow cure (up to 50 fpm)

Further reduction of binder with what we call our "SLOW" UV formula

Miltec 732: "Slow" 90-5-5

Miltec 742: "Slow" 90-6-4

Miltec 743: "Slow" 90-7-3

Additional reformulation led to a "FAST" formula (cures to 328 fpm)

Miltec 817: "FAST" 90-5-5

Miltec 747: "FAST" 90-7-3

Impedance of the current best UV-cured cathode

- Achieved impedance of the slot-die UV cured cathode comparable to the hand-draw down PVDF cathode
- Next step: compare impedance of the UVcured cathode with the impedance of the industry's best cathode

Miltec Cost Model complied from ANL, NREL, TIAX Cost Models

•Electrode Model includes:

- •MATERIAL COSTS:
 - NMC, Graphite, Carbon, Foil
 - Binder, Lost Solvent (95% recycled)
- •CAPTIAL COSTS:
 - Building (HVAC, Clean Room, Solvent Recovery)
 - Equipment (Mixers, Coaters, Dryers or Curing)
- **•OPERATING COSTS:**
 - Labor, Electricity, Fuel

UV Cathode Manufacturing Cost

UV Cathode Cost Savings

Summary

- Miltec UV has successfully qualified candidate UV Curable constituents including: Oligomers, Monomers, Photoinitiators, and Dispersants
- NMC based cathode tests confirmed:
 - ✓ Layered coating
 - ✓ Confident of making NMC cathode with performance at least equal, most likely better than reference with PVDF
- Moved from baseline of 87/8/5 (cathode material/binder/carbon) to 90/5/5 and 90/7/3
- Successfully cured 90/5/5 at 100 meters/minute

Thank You

DOE for their funding contributions and advice

Partners

