Unique Lanthanide-Free Motor Construction

Josh Ley, Principal Investigator Alan Gilbert, Program Manager UQM Technologies, Inc.

2015 Annual Merit Review

April 10, 2014

EDT044

Overview

Timeline

Project start date: 10/1/2011

Project end date: 4/30/2016

Percent complete: 80%

Budget

Total project funding

\$3,017K DOE Share

\$1,006K UQM Share

Funding received in FY14: \$794K

Funding for FY15: \$821K

Barriers Addressed

A: Electric motor cost

B: Elimination of rare-earth

elements

E: Efficiency

Partners

Ames Laboratory: improved magnet

properties

NREL: motor thermal management

ORNL: motor testing

Coordination provided by UQM

Program Manager

Relevance to VTO

- If successful the motor design will meet DOE targets w/o Rare earth magnets
- Utilization of AlNiCo magnets will hedge the volatile pricing of NdFeB and other rare earth constituents.
- Proving out Proof of Concept design motors and confirmed near compliance with VTO specifications and OTS magnet materials
- Motors under development are applicable to a number of vehicle architectures for which the VTO is developing technology, including pure EV, Plug-in EV and many other vehicle architectures.
- The project has shown that non-rare earth motors can be manufactured and demonstrate competitive performance with SOA automotive motors

Approach - Milestones

Month/Year	Milestone or Go/No-Go Decision		
02/2013	Milestone: complete motor assembly concept		
04/2013	Milestone : Complete Period 1 and Enter Period 2		
11/2013	Milestone: motor drawing package complete		
04/2014	Milestone: motor build complete and ready for dynamometer testing		
07/2014	Go/No-Go: UQM dynamometer testing demonstrates technology feasibility		
09/2014	Milestone: delivery of proof of concept motor to ORNL for independent testing		
01/2015	Milestone: Approval to continue into BP3 with enhanced magnet material from Ames		

Approach - Milestones

Month/Year	Milestone or Go/No-Go Decision		
10/2014	Milestone: Complete Period 2 and enter Period 3		
11/2014	Go/No-Go: Proceed into BP3 based on ability to correct POC short comings		
11/2015	Milestone: Incorporate enhanced magnets into POD motor design		
02/2016	Milestone: Build two (2) POD motors		
03/2016	Milestone: Dynamometer test at UQM POD motors to validate improvements		
04/2016	Milestone: Deliver POD motor(s) to DOE for independent validation		
03/2016	Milestone: Complete higher power (120kW) motor design		
4/2016	Milestone: Completion of BP3 and project		

Approach - Project Strategy

- Non-rare-earth magnet chemistries such as AlNiCo are capable of supporting the high flux densities needed to meet cost, power density, specific power, and efficiency targets
- These magnets are not used because they will demagnetize if used in existing magnetic circuit designs

UQM's project strategy is to use and refine a magnetic circuit that avoids demagnetization ⇒ high permeance coefficient and low armature reaction fields experienced at the magnets

Coordination and Collaboration with Other Institutions

- Subcontractor: Ames Laboratory, FFRDC within the VT Program, for incremental improvements in high flux, low coercivity magnet materials
 - Enable high loads (current density) and minimize magnet content
- Subcontractor: National Renewable Energy Laboratory, FFRDC within the VT Program, for thermal management
 - Assembly heat rejection for power density and cost
- Subcontractor: Oak Ridge National Laboratory, FFRDC within the VT Program, for testing
 - Confirmatory testing; results to be used for design refinement between Year
 2 and 3

Progress - Key Specifications

Requirement		Value	Model Prediction	POC #1 &2
	Efficiency	>90%	Analyzed, Comply	Analyzed, Comply
DOE Requirements	Peak Power	55 kW	55 kW	55 kW verified at UQM
	Maximum Speed	10,000 rpm	10,000 rpm	Verified at UQM (durability concerns)
	Operating Voltage Range	200-450 VDC 325 VDC Nominal	Analyzed, Comply ¹	Comply ¹
	Maximum phase current	400 A	Analyzed, minimal demagnetization	8% Demagnetization
	Torque	262 N-m	Analyzed, minimal demagnetization	235 Nm verified at UQM
	Total Volume	≤ 9.7 L	9.59 L	9.59 L (actual)
UQM Internal Requirements	Max Stator Diameter	254 mm	250.8 mm	250.8 mm (actual)
	Pole Coverage	50%-90%	55 %	55 %
	Magnet Weight Limit (For Cost)	4.5 kg	4.5 kg	4.5 kg (actual)
	EMF Voltage	83.6-92.4 V/krpm L-L	88 V/krpm L-L	84.25 V/krpm L-L
	EMF THD	< 10%	2.86%	Comply
	EMF Harmonics	< 5% of Fundamental	2.27%	Comply
	Cogging Torque	< 4 N-m	3.85 N-m	Comply
	Specific Power	1.57 kW/kg	1.57 kW/kg	1.44 kW/kg (actual)
	Power Density	5.74 kW/Liter	5.74 kW/Liter	5.74 kW/Liter (actual)

Notes:

^{1.} Complies using voltage boost topology inverter

Prototype 1 and 2 Motor Build

 Motor performance characterization on the UQM dynamometer

- ✓ Back EMF measurements
- ✓ Maximum Torque tests (POC1)
- ✓ Power Profile (POC2)
- ✓ Maximum Speed test (POC1)
 - Achieved 10krpm

3rd party testing to be performed at ORNL

 Back-EMF measurement on low side of tolerance range, but within tolerance of magnet properties

✓ Measured EMF Amplitude = 84.5 V/krpm L-L

✓ EMF prediction 89.7 V/krpm L-L

- Maximum Torque Test POC1
 - Torque was incremented at low speed in 10% steps
 - EMF was measured after each torque step

- ✓ Measured 8% Lower EMF at 100% torque requested
- √ Validates predicted load line at full torque

- Maximum Power Provide POC2
 - Measure torque and power vs. speed
 - Limit speed to 5000 rpm b/c of durability concerns

- Refine for Proof of Design (POD motor)
- 30% higher coercivity needed to achieve full torque with 20% design margin
- >30% increase in coercivity = reduced magnet content = reduced cost <u>and</u> higher speed capability

NREL: Stator-to-Case Thermal Resistance

Objective: Measure thermal resistance of contact between stator and housing

NREL: Stator-to-Case Thermal Resistance

Results

- Completed measurement of M19, 29 gauge material
- Measured 3 coupon thicknesses
- Analysis of results provides:
 - Thermal conductivity of laminations parallel to the orientation of the laminations
 - Thermal contact resistance between case and laminations
- Performed 3 repetitions per data point
- Error bars represent 95% confidence interval including random and systematic uncertainties
- Error bars may be reduced with additional repetitions
- Additional materials are being tested

AMES: Compression Molding: Bulk Magnets from Pre-alloyed Powder

- Results on 8h sinter show improved remanence, energy product, and squareness, due to partial alignment of grains in sample.
- Since this grain growth was "happy accident," experiments are in-progress to develop aligned grain growth control.
- Magnet still needs better coercivity (significantly above 2,000 Oe).
- Theory indicated that refined spinodal spacing (nano-structure) can double coercivity and experiments are in-progress.

Future Work

- Complete Design of POD Motors
 - Incorporate enhanced AlNiCo magnets from Ames
 - Incorporate learning from POC motors and 3rd party testing at ORNL
 - Build 2 POD magnets
- Motor Characterization POD motors
 - Verify fundamental parameters (Bemf, cogging torque no load losses ..)
 - Show improvements over POC motors, full torque, speed, viability
 - Verify performance (peak and continuous torque/power and efficiency)
- Demonstrate Proof-of-Design testing at UQM
- ORNL (3rd party) Testing for POD motors
- Design 120 kW version to demonstrate scaleability

Summary

- POC motor demonstrates performance very close to requirements with OTS magnet material
- Motor
 Ohrow Inverter analysis indicates that the design is not field weakening compatible and will require a voltage boost inverter
 - Field weakening may be achievable with 50% improvement in magnet properties
- NREL models and data to optimize cooling and heat transfer are being incorporated into POD motors.
- Ames' work for increasing magnet properties will also be incorporated into POD motors
- Motor build will demonstrate the feasibility of the approach and appears it will meet or exceed DOE requirements with Ames magnets and optimize cooling methods from NREL