

Capacity Fade Suddenly Accelerates with Si Alloy Anode

- Electrolyte: EC:EMC 3:7
 + 10% FEC, 1M LiPF₆
- The capacity fade rate suddenly increased after 100 cycles with 15% Si alloy.
- Graphite alone shows no such kind of sudden fade within its typical cycle life

FEC Plays a Critical Role to Delay the Sudden Fade

Electrolytes

- **A** FEC:EMC:DMC:PC 3/3/3/1 0.95M LiPF₆, 0.05M LiBOB
- **B** EC:EMC 3:7 + 10% FEC, 1M LiPF₆

Very different behavior with electrolyte composition
Conclusion: FEC delays rapid fade.

Large Amount of FEC Causes Serious Gassing

- Si alloy anode/HV LCO
- Storage at 4.35V, 85C and 3 hours
- Electrolyte:

Blue: 1M LiPF6 in EC/EMC

(3:7) – Control

Red: Control+10% FEC

Storage Gassing with FEC Continues After 3 Hours

- Si alloy anode/HV LCO
- Storage at 4.35V, 85C for 3 and 7 hours
- Electrolyte:

Blue: 1M LiPF6 in EC/EMC

(3:7) – Control

Red: Control+10% FEC

Serious gassing issue makes high content of FEC less practical.

Sudden Fade Mechanism

Si/Electrolyte reaction – Si consumption

- Cross section SEM images of electrodes before cycling
- 3M alloy coating similar to fresh Si coating
- Both Si and 3M alloy particles are clearly observed
- EC:EMC 3:7 + 10% FEC,
 1M LiPF₆

Si Consumption

After 100 cycles

- Cycled 3M alloy has small SEI
- Cycled Si: there are no more particles! Only reacted material

Major expansion with Si due to SEI growth

10 um

Si/Electrolyte Reaction – FEC Consumption

Si/Electrolyte Reaction – FEC Consumption

- Significant FEC assumption
- Assuming DMC and EMC consumption negligible, ~ 60% of the initial FEC has been consumed.
- About 10% of the initial PC have been consumed.
- Two unknown peaks seems to indicate trace amount of Si containing compounds

Cell	% DMC	% EMC	% FEC	% PC
7866 (uncycled)	27.8 ± .3	28.0 ± .2	33.0 ± 0.4	11.1 ± 0.1
7867 (cycled)	37 ± 1	38.8 ± 0.2	11.4 ± 0.4	12.2 ± 0.5

Concentrations shown as percent of DMC+EMC+FEC+PC

Sudden Fade is Correlated With Rapid Swelling of Pouch Cells

- Pouch cells assembled by Li Fun (Hunan, China) with 3M CV7 alloy
- Approximately 5% volume expansion before sudden fade occurs
- Massive volume expansion upon sudden fade

Approach to Delay Sudden Fade

Shallow Cycling

Cathode 96% HVLCO; 2% SP; 2% PVDF

Anode

13% CV7; 75% Gr; 2% SP, 10% LiPAA

Electrolyte

5/25/35/35 FEC/EC/EMC/DMC 1M LiPI

Cycling protocol

- 1 full cycle: 3.0 4.35 V, C/4; C/2
- 20 shallow cycles
 - Charge to 4.35V
 - Limited cap discharge (30% or 50% or 70%)

3M Alloy with Improved Microstructure Delays Sudden Fade

18650 Cells

Cathode 96% HVLCO; 2% SP; 2% PVDF

Anode 15% Alloy; 65% Gr; 10% KS6; 10% LiPAA

Electrolyte 30/70 EC/EMC 1M LiPF₆ +10% FEC

3M Electrolyte Solvent L-20446 Delays Sudden Fade

1.0M LiPF6 / EC:EMC (3:7 by wt) + 10 wt% FEC (FEC control)

1.0M LiPF6 / EC:EMC:L-20446 (1:1:1 by wt) + 10 wt% FEC

1.0M LiPF6 / EC:EMC:L-19869 (1:1:1 by wt) + 10 wt% FEC

Electrolyte with VC/EA Solvent Delays Sudden Fade

18650 Cells

Cathode 96% NMC442; 2% SP; 2% PVDF

Anode 56% CV4; 34% Gr; 10% LiPAA

Electrolyte 25/75 VC/EA (Ethyl Acetate) 1M LiPF₆

NMC Cathode Delays Sudden Fade Compared to LCO

18650 Cells

Cathode HVLCO vs. NMC662

Anode 15% CV7; 65% Gr; 10% KS6, 10% LiPAA

Electrolyte 30/70 EC:EMC 1M LiPF₆ +10% FEC

Summary

- Repeated volume change with every cycle consumes electrolyte and leads to suddenfade for all Si-based materials
- 3M Si-alloy has much less reaction with electrolyte
- FEC delays sudden fade, but causes too much gassing at high levels
- Changes to the electrolyte can delay or even eliminate sudden fade
- Choice of cathode can delay sudden fade

