

Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

Douglas DeVoto
National Renewable Energy Laboratory
2015 Annual Merit Review
June 10, 2015

Project ID: EDT063

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

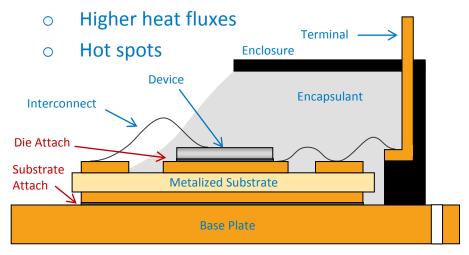
Timeline

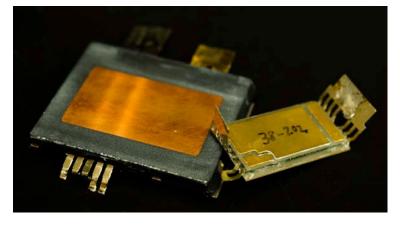
- Project Start Date: FY14
- Project End Date: FY16
- Percent Complete: 30%

Budget

- Total Project Funding: \$900K
 - o DOE Share: \$900K
- **Funding for FY15:** \$400K

Barriers and Targets

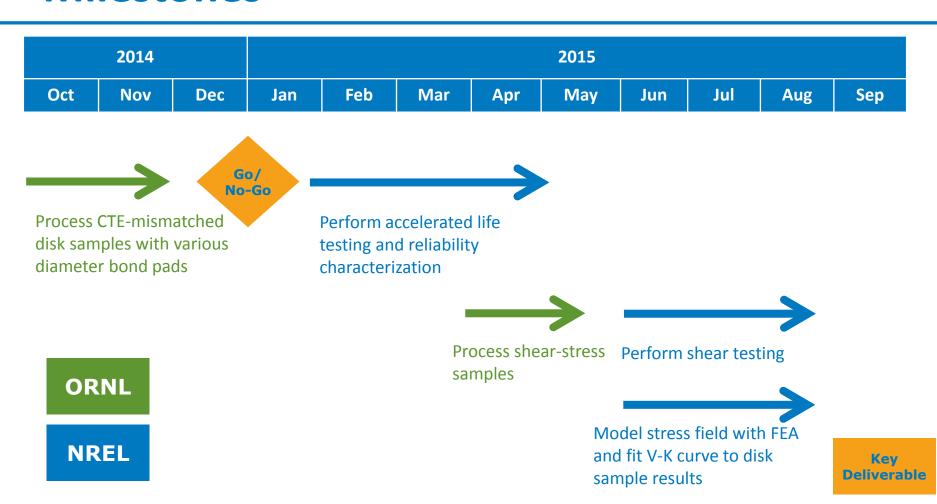

- Cost
- Weight
- Performance and Lifetime


Partners

- Interactions / Collaborations
 - Heraeus, Henkel, General Motors, Fraunhofer, Oak Ridge National Laboratory (ORNL) (Andrew Wereszczak)
- Project Lead
 - National Renewable Energy Laboratory (NREL)

Relevance

- Current automotive power electronics are transitioning from silicon to wide bandgap (WBG) devices to meet cost, volume, and weight targets
- Packaging designs must improve to take advantage of WBG devices' operating parameters:
 - Higher operating temperatures

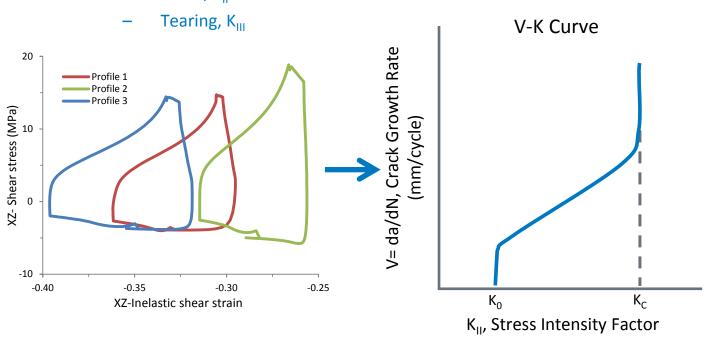


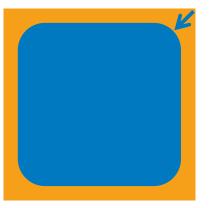
Traditional Power Electronics Package

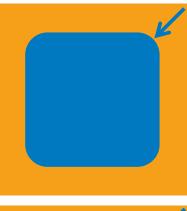
State-of-the-Art Packages

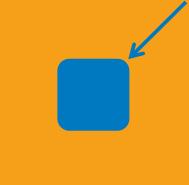
- Sintered-silver reliability has not been documented at 200°C conditions for the substrate attach layer
 - ORNL and NREL's prior experience with sintered-silver processing will generate recommended practices for synthesis of reliable interfaces

Milestones


Go/No-Go: Do bonds meet minimum strength requirements?


Key Deliverable: Publish V-K curve for sintered-silver

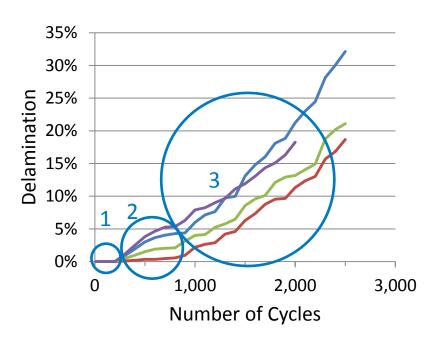

CTE = coefficient of thermal expansion FEA = finite element analysis V= da/dN, crack growth rate (mm/cycle) K = stress intensity factor

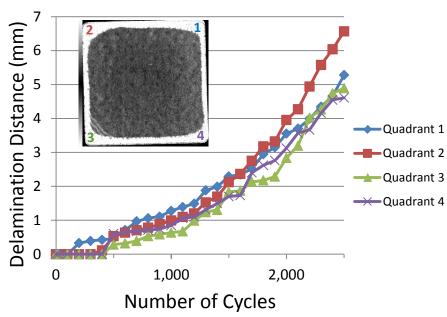

Strategy

- Identify threshold at which stress field is sufficient to cause delamination initiation
 - The stress field is a function of the loading amount, deformation mode, and the region of interest relative to the crack tip deformation
 - Crack tip deformation can propagate through three modes:
 - Tension, K
 - Shear, K_{II}

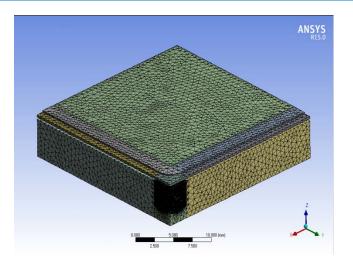
Strategy

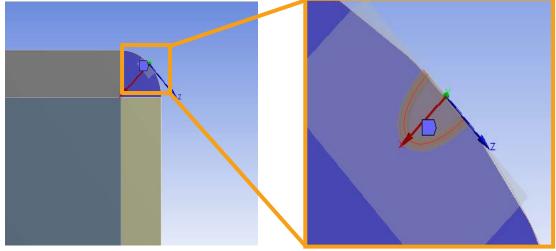
- Process CTE-mismatched disk samples with various diameter bond pads to validate stress field relationship with delamination initiation
- Subject samples to accelerated temperature testing:
 - -40°C to 175°C thermal shock
 - 175°C and 250°C temperature elevation
- Monitor delamination rates through acoustic microscopy



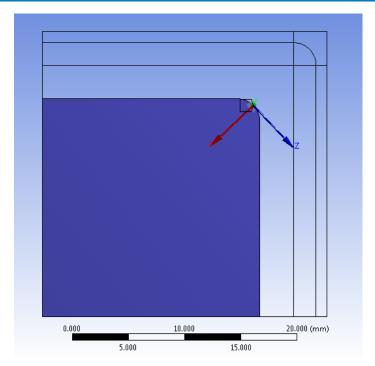

- Synthesize initial samples for mechanical characterization of sinteredsilver
 - Attempt to measure residual stress at room temperature
 - Estimate stress-strain curves
 - Use information to model plastic deformation
- Subject samples to shear tests for development of stress-strain curves and replace bulk silver material properties

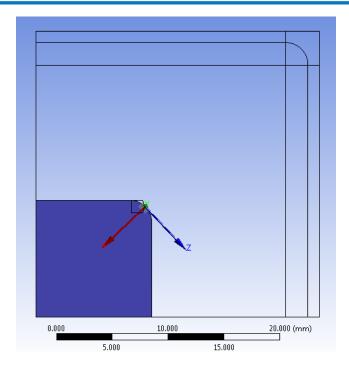
Top View


Crack Evaluation


- Identified threshold at which stress field is sufficient to cause delamination initiation
 - Measured delamination rate of 50-mm-x-50-mm sintered-silver samples
 - 1. Identified threshold at which stress intensities are sufficient to cause defect initiation
 - 2. Evaluated the defect region where a transient delamination rate occurs
 - 3. Evaluated the defect region where a constant slope delamination rate occurs
 - Modeled stress field with FEA

Interface Modeling – Crack Modeling

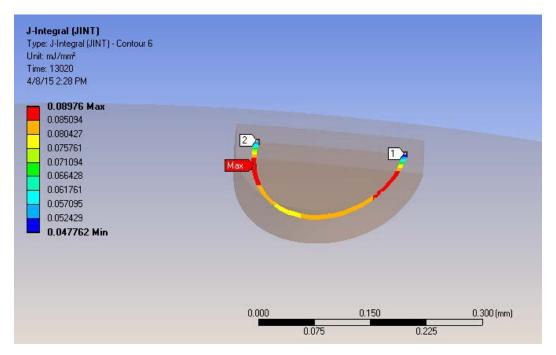



Viscoplastic Analysis

Elliptical Crack Modeled in Interface Layer

- Fracture-mechanics—based crack modeling adopted for sintered-silver
 - 1. A non-linear viscoplastic analysis (without an embedded crack) is first completed to determine the maximum stress location
 - 2. An elliptical crack is created around this location
 - 3. A subsequent analysis determines the stress field around the crack

Interface Modeling – Crack Growth

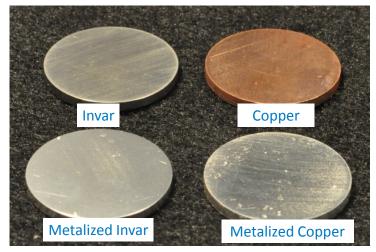


Elliptical Crack Models Replicating Crack Propagation

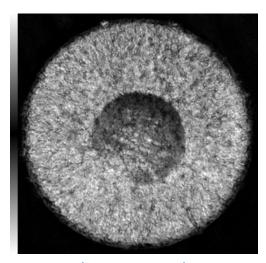
- The elliptical cracks are modeled at increasing distances from the far corner to replicate crack propagation
- The geometry is manually changed as propagation cannot be modeled
 - A crack growth law would need to be considered for directly modeling crack growth

Interface Modeling – J-Integral

- J-integral (mJ/mm²) is a path-independent fracture mechanics parameter which describes the stress field near a crack tip for inelastic deformation
 - J-integral values along the crack propagation path can be obtained
- As the bonded interface region decreases, J-integral value increases

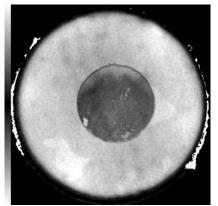

J-Integral Plot along a Crack Contour

CTE-Mismatched Disk Samples


 Processed CTE-mismatched disk samples with various diameter bond pads to validate stress field relationship with delamination initiation

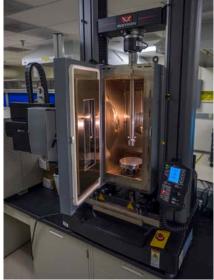
- Invar and copper were selected for round test coupons
 - Coupon dimensions are 25.4 mm in diameter, 2 mm in thickness
 - Materials were chosen for CTE mismatch
 - Surfaces were blanchard ground and metalized with silver

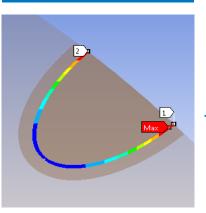
Invar and Copper Test Coupons



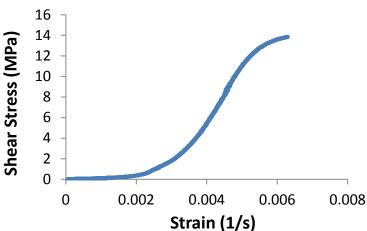
Initial 10 mm Bond Scan

Mechanical Characterization


Sample Synthesis



Shear Testing


Interface Modeling

Literature Comparison

Shear Stress Measurement

Responses to Previous Year Reviewers' Comments

The reviewer questioned why it was desired to start module packaging work by selecting materials with different coefficients of thermal expansion.

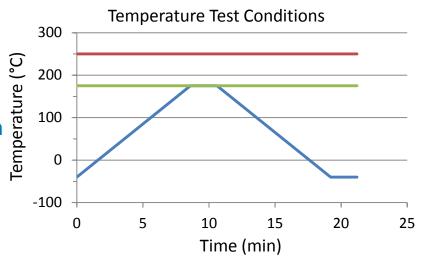
It was desired to create a test sample package that imparted the greatest CTE mismatch possible to accelerate degradation.

The reviewer suggested that the effort would benefit from collaboration with power module manufacturers.

Synthesis and reliability findings are being openly shared with power module manufacturers. It is a future goal to see the integration of large-area sintered-silver bonding in a production module.

Collaboration and Coordination

• ORNL: technical partner on sintered-silver samples


- Fraunhofer: modeling collaboration
- Henkel: sintered-silver material guidance
- Heraeus: sintered-silver material guidance
- General Motors: technical guidance
- APEI: technical guidance

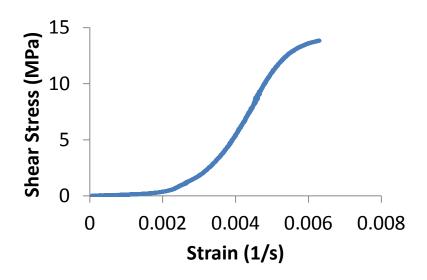
Remaining Challenges and Barriers

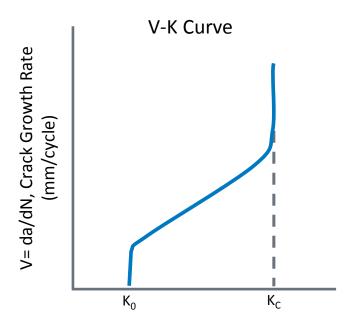
- Quality of sintered-silver joints is dependent on many parameters (temperature, pressure, and time of synthesis, plating quality)
- Obtaining accurate material properties for sinteredsilver is critical for crack analysis modeling
- Fracture-mechanics—based crack modeling must replicate sintered-silver failure mechanism

Proposed Future Work (FY15)

- Subject round samples to accelerated temperature testing:
 - −40°C to 175°C thermal cycle
 - 175°C and 250°C temperature elevation
- Monitor delamination rates through acoustic microscopy

- Synthesize and shear test initial samples for mechanical characterization of sintered-silver
 - Attempt to measure residual stress at room temperature
 - Estimate stress-strain curves
 - Use information to model plastic deformation

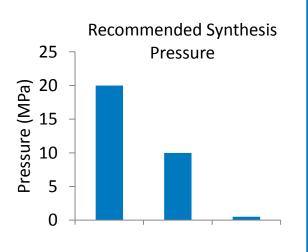

Shear Test Fixture and Sample

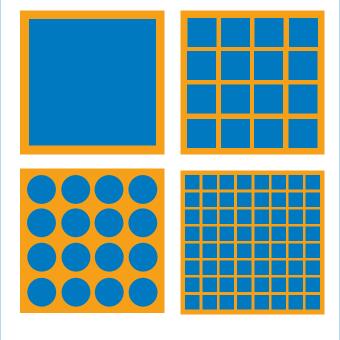

Proposed Future Work (FY15)

- Evaluate material properties
 - Stress-strain curves obtained from shear testing
 - Compare temperature-dependent material properties of bulk versus sintered-silver

- Model additional simulations with incrementally lower bond pad regions
- Perform sensitivity analysis of elliptical crack contour
- Initiate crack propagation modeling

Establish V-K curve for sintered-silver




Proposed Future Work (FY16/17)

 Evaluate the delamination rate of sintered-silver test coupons under various pressure requirements, bond pad geometries, and surface plating materials

Evaluate low- and no-pressure sintered-silver materials

Optimize pad geometries for a large-area bond pad

Recommend industry standard practices for plating

Plating Material	Ag, Au
Cleaning	None, substrate cleaning, pre- oxidation

Poor Ag Plating

Summary

• DOE Mission Support:

 Bonded interface materials are a key enabling technology for compact, lightweight, low-cost, reliable packaging, and for high-temperature coolant and air-cooling technical pathways

Approach:

 Synthesis of sintered-silver bonds, thermal temperature cycling, bond inspection (acoustic microscope), and stress field versus cycles-to-failure models

Accomplishments:

 Established a procedure for the material and degradation characterization of sintered-silver

Collaborations

ORNL, Fraunhofer, Heraeus, Henkel, GM, APEI

Acknowledgments:

Susan Rogers and Steven Boyd U.S. Department of Energy

Team Members:

Paul Paret
Andrew Wereszczak* (ORNL)

For more information, contact:

Principal Investigator
Douglas DeVoto
Douglas.DeVoto@nrel.gov
Phone: (303) 275-4256

EDT Task Leader

Sreekant Narumanchi Sreekant.Narumanchi@nrel.gov Phone: (303) 275-4062

^{*} Jointly funded by the OVT EDT and OVT Propulsion Materials Programs