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Overview

Timeline
• Start: October 1, 2013
• End:   Sept. 30, 2015
• Percent complete:  

80+%

Budget
• 276K/2 yr.

Barriers
• Calendar/cycle life of lithium-

ion cells being developed for 
PHEV and EV batteries that 
meet or exceed DOE/USABC 
goals

Partners
• Farasis Energy Inc.
• LBNL

2



–LMR-NMC class of layered compounds : Best known cathode 
option to date

–However, voltage fade (VF) in LMR-NMC causes unacceptable 
energy loss

–Need to solve structural and electrochemical performance   
problems

–Explore new syntheses routes towards VF-free cathode 
materials

–Focus on changing stacking sequence in c-axis direction for 
layered oxide materials

•Remove O3 -> move to O2 stacking (no spinel change during 
cycling theoretically possible)

Relevance
• New cathode materials are required to improve the energy 

density of Li-ion cells for transportation technologies.  
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Approach
Concepts explored:
 Develop new routes to synthesize high-energy cathode materials

– This work:  Ion-exchanged cathode materials*

 Use stacking faulted cathode material* that is:
– Stacking faults guided by ion-exchange chemistry of Na-types
– Li-rich (high-capacity)
– Structurally ‘flexible’ – stacking faults/sliding of layers which will adjust naturally to 

Li-content as it cycles
• No bulk phase transitions expected
• No deleterious movement of TM cations expected; no spinel formation
• High-rate capability possible – again stacking faults allow fast insertion of Li 

cations
• High Mn content  -possible good thermal stability, less expensive

 Use new synthesis and advanced characterization methods to examine material
 Test material as cathodes and use VF protocol developed @ Argonne
 Compare to baseline cathode materials (Toda HE5050 : 

0.5Li2MnO30.5Li[Ni0.375Mn0.375Co0.25]O2); Ni0.15Mn0.55Co0.1

 Work with Farasis Energy Inc. to develop full cell chemistry with *new cathode
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P2 Stacking
O2 Stacking

Ion-exchange

Na(Li)-based 
layered NixCoyMnz

oxide

Ion-Exchange Synthesis of  Layered-Layered NCM

O3 Stacking

Mixed Metal 
Hydroxide 
Precursor

+ Li2CO3

+ Na2CO3,
Li2CO3

(layer glide)

O3 (Spinel)

Cycling

O2 Stacking

Cycling

Li-rich layered NixCoyMnz oxide
(LL-NCM)

Ion Exchanged Li-rich layered NixCoyMnz oxide
(IE-LL-NCM)

Possible impact of ion-
exchange route on structure of 

high energy materials.
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• Baseline with Toda HE5050
• Synthesis

– Ni-Mn-Co composition variance
– Na/Li composition variance
– Post heat-treatment
– Ion-exchange conditions variants

• Characterization
– Electrochemical
– Structural

• Technology transfer to Farasis

Completed
On-going
Completed
Completed
Completed
On-going
On-going
On-going
On-going
Completed

Milestones of FY’15
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Synthesis flow Example
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Parent: Li1.0Na0.2(Mn0.656Ni0.219Co0.125)O2+δ

Precursor: (Mn0.656Ni0.219Co0.125)(OH)2

+Li & Na mixed salts
(fired in air)

Product: Li1+x(Mn0.656Ni0.219Co0.125)O2+δ

- 0.2 Na, + xLi (ion-exchange process; IEx)
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 Faults in shear order of crystal lattice during 
ion exchange

 Still strongly layered
 Local c-axis disorder
 DIFFAX modeling:  O2 layer stacking is best fit

• X-ray diffraction indicates good layering order but significant disorder in 
other crystallographic directions suggesting presence of stacking faults.

Viewing direction

Na-Li NCM IE- Li NCM

Ion-Exchange Synthesis of  Layered-Layered NCM
(with Toda HE5050 TM composition ratio)

10 20 30 40 50 60 70

IEx-Lix[Li0.203Ni0.15Mn0.547Co0.1]O2  

 

 

2θ (degree, CuKα)

P2-Na0.731[Li0.203Ni0.15Mn0.547Co0.1]O2

O2 Diffax model

O2 IEx-Lix[Li0.203Ni0.15Mn0.547Co0.1]O2

P2-Na0.731[Li0.203Ni0.15Mn0.547Co0.1]O2
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l"

Lix[Li0.2Ni0.15Mn0.55Co0.1]O2-d IEx derived cathode 
material (Toda HE5050 composition) 



a["

Lix[Li0.2Ni0.15Mn0.55Co0.1]O2-d IEx VF result 

•! Lower operating voltage, but less VF with IEx materials 



LixNa0.2(Mn,Ni,Co)O2+d :
Exploration of mixed metals effect – hydroxide 
precursors: Na poor, Li rich

Precursor Mn Ni Co

AG7 0.45 0.15 0.4

AG6 0.6 0.2 0.2

AG8 0.656 0.219 0.125

AG10 0.656 0.125 0.219

Precursor Li Na

AGx-1 0.8 0.2

AGx-2 0.9 0.2

AGx-3 1.0 0.2

• Precursors are co-precipitated hydroxides
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AG8 XRD before ion-exchange

Precursor Li Na

AG8-3 1.0 0.2

AG8-4 1.1 0.2

AG8-5 1.2 0.2

AG8-6 1.3 0.2

AG8-7 1.4 0.2

AG8-8 1.5 0.2

• Material is composed of three phases (P2 and P3-type NaxMnO2, 
Li2MnO3, and LNMC) 

• Sodium phase peaks decrease with increasing Li content, as expected 
and are completely gone when Li = 1.5 (Li/Mn+Ni+Co = 1.5)

• No carbonate peaks found in XRD

Decided to force more Li in structure

single phase – sweet spot
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AG8 XRD after ion-exchange

Precursor Li Na

AG8-3 1.0 0.2

AG8-4 1.1 0.2

AG8-5 1.2 0.2

AG8-6 1.3 0.2

AG8-7 1.4 0.2

AG8-8 1.5 0.2

• Ion-exchange using LiBr and hexanol for 24 h w/ nice crystallinity
• Sodium phase peaks disappear
• All peaks after ion-exchange appear to be associated with layered-

layered material (i.e. LMR-NMC)
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Composition after ion-exchange

Sample Composition Two-component 
notation

Oxidation State in NMC

Mn Ni Co

AG8-3 Li1.2Mn0.656Ni0.219Co0.125Ox
0.2Li2MnO3 * 

0.8LiMn0.57Ni0.27Co0.16O2
3.47+ 2+ 3+

AG8-4 Li1.3Mn0.656Ni0.219Co0.125Ox
0.3Li2MnO3 * 

0.7LiMn0.51Ni0.31Co0.18O2
3.61+ 2+ 3+

AG8-5 Li1.4Mn0.656Ni0.219Co0.125Ox
0.4Li2MnO3 * 

0.6LiMn0.43Ni0.36Co0.21O2
3.84+ 2+ 3+

AG8-6 Li1.5Mn0.656Ni0.219Co0.125Ox
0.5Li2MnO3 * 

0.5LiMn0.31Ni0.44Co0.25O2
4+ 2.30+ 3+

AG8-7 Li1.6Mn0.656Ni0.219Co0.125Ox
0.6Li2MnO3 * 

0.4LiMn0.14Ni0.55Co0.31O2
4+ 2.75+ 3+

AG8-8 Li1.7Mn0.656Ni0.219Co0.125Ox
0.656Li2MnO3 * 

0.344LiNi0.64Co0.36O2
N/A 3+ 3+
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Charge-Discharge curves – 1st, 10th, and 20th cycles 
– (IEx material tested in Li half cell – VF protocol)

• First cycle capacity increases with lithium content in material 
• Further activation of some materials in subsequent cycles increases capacity
• In samples with highest lithium content (AG8-7 and AG8-8) the capacity slightly 

decreases with subsequent cycling
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Cycling behavior  – (IEx material tested in Li half 
cell – VF protocol)

• Low capacities
• Initial voltage fade rate decreases for first 10 – 15 cycles
• Average voltage generally decreases with increasing lithium content
• Amp-hour and Watt-hour efficiencies improve with increasing lithium 

content in starting material
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• Repeatability (composition variance) hard to control in ion-
exchange process

• High capacities are obtainable from this chemistry
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AG8 XRD after ion-exchange

Precursor Li Na 003/020
peak ratio

AG8-7-Na0.0 1.4 0.0 0.40

AG8-7-Na0.1 1.5 0.1 0.19

AG8-7-Na0.2 1.6 0.2 0.29

• Ion-exchange using LiBr in hexanol and heating for 24 h
• Sodium phase peaks disappear
• All peaks after ion-exchange appear to be associated with layered-

layered material (i.e. LMR-NMC)
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Cycling behavior – Na effect (IE material – VF 
protocol)

• No obvious trend in capacity was 
found based on initial Na content

• Initial Li content more dominant

0.2

0.1

0
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iR Corrected Voltage – Na effect (IE material – VF 
protocol)

• Highest sodium content lead to higher average resistance 
during cycling

• Highest sodium content sample displayed lower charge voltage 
fade
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AG8 XRD after ion-exchange

• Post heated sample does not show any significant structural changes 
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Cycling behavior – Postheated AG8-7-IE (VF 
protocol)

• Post heat treatment enables a 25 – 30 mAh/g increase in capacity 
for all cycles

• Capacity fade appears to be slightly less in post heated samples
• Both samples display similar voltage fade
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Average Voltage and Resistance – Postheated AG8-7-
IE (VF protocol)

• Voltage fade is slightly worse after post heat treatment
• Both samples decrease in resistance over the 10 – 15 cycles
• Post heated sample displays higher average resistance 
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• Rate capability of samples is improved when the starting material has more 
sodium content

Black – 10 mA/g
Red – 250 mA/g
Blue – 1000 mA/g

Cycling behavior – AG8 with different starting 
material Na+Li ratios
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Summary

• Evaluation of various Mn, Ni, and Co compositions suggest 
that Mn-rich systems are best in making the Li O3 phase with 
Na P2 second phase
– High Li, low Na not the right direction
– Should use P2 High Na, Low Li in Pre-IEx layered phase

• For Mn-rich, more Li creates Na incorporation in Li O3 
structure (pre IEx)

• Ion-exchange process: more crystalline materials from dilution 
factor in reaction

• Clean pre-IEx material makes better Ion Ex product in terms of 
echem

• Capped out with capacity about 200-205 mAh/g
– Need to get to 250 mAh/g level

25



Remaining Challenges and Barriers

• Work still exploratory at this juncture
• Can we find a new synthesis route not yet used that will stop 

voltage fade
• Must determine location of Li, TM cations in IEx-LL-NCM to 

direct syntheses going forward
– Confirm no spinel phase formation upon cycling

• Synthesis:
– Increase tap density
– Streamline ion-exchange route

• Can it be scaled?

• Improve high-power properties
– Surface coatings
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Future Work

• Explore more Na-rich and Li poor P2 Pre-IEx 
materials

• Continue with mixed Ni, Mn, Co phases precursors –
optimize
– Move into Ni rich systems

• Continue exploration of post HT after IEx reaction
• More characterization to be done

– Microscopy
– X-ray absorption

• Continue working with Farasis on enabling these 
cathode materials for high-energy LIBs
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