

Efficient Rechargeable Li/O₂ Batteries Utilizing Stable Inorganic Molten Salt Electrolytes

Principal Investigator: Vincent Giordani Liox Power, Inc.

Annual Merit Review DOE Vehicle Technologies Program Arlington, VA June 10, 2015

ES233

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Licx

Timeline

- Project start date: 10-01-2014
- Project end date: 09-30-2017
- Percent complete: 16.6%

Budget

- Total project funding
 - DOE share: \$1,500,000
 - Liox share: \$375,000
- Funding received
 - FY14: \$125,000
 - FY15: \$500,000

Barriers

- Barriers addressed for Li/Air
 - Electrolyte stability
 - Fast electrode kinetics and high reversibility
 - Air tolerance

Partners

- National Laboratories
 - Lawrence Berkeley
- Academia
 - Caltech

Relevance

Relevance

- Despite promise based on extremely high theoretical capacity, current Li-air battery technology fails:
 - Unstable, volatile electrolytes
 - High voltage hysteresis, poor cycle life
 - Low power density and intolerance to air (H₂O, CO₂), necessitating costly and heavy gas handling and O₂ purification equipment
- > Radical new approach is needed to solve these problems

Objectives

- > Demonstrate inert, nonvolatile electrolytes
- Demonstrate long-term, higher rate, low voltage hysteresis cycling enabled by enhanced solubility of discharge products
- Demonstrate very high capacity, reversible, 4 electron Li/O₂ cells (Li₂O discharge product)
- > Demonstrate Li-air battery cycling in ambient air without the need for O₂ purification

Approach and Deployment Strategy I

Approach: Replace volatile, unstable and/or air-intolerant aqueous or organic electrolytes with inert molten nitrate electrolytes and operate cell above liquidus temperature (> 80 °C)

Lī

- Strategy: Improved reversibility and rate capability since discharge products (Li₂O₂, Li₂O, LiOH and Li₂CO₃) are stable and sparingly soluble in molten nitrate electrolytes; Electrode kinetics and mass transport are faster at elevated temperature
- Research methodology: Combine quantitative gas analysis (pressure monitoring, mass spectrometry) with precise coulometry to analyze air electrode processes

Approach and Deployment Strategy II

- Nitrate reduction and SEI formation reaction: 2Li⁺ + LiNO₃ + 2e⁻ → Li₂O + LiNO₂
- E = 2.44 V vs. Li⁺/Li at 150 °C (sluggish kinetics on carbon)
- "Conventional", nonaqueous Li/O₂
 electrochemistry between 2.5 and 3.5 V

- Low overpotential (>4 mV) Li metal cycling in eutectic for >500 hrs
- SEI layer is pseudo-stable. Li₂O is sparingly soluble
- Coulombic efficiency for Li plating and stripping on Cu is >95%

Milestones: FY2014 and 2015

A (Dec 14)	Demonstrate alkali metal eutectic compositions having eutectic points below 120 °C Complete
B (Dec 14)	Measure ionic conductivity and Li ⁺ transference number in eutectic compositions Complete
C (Mar 15)	Measure diffusion coefficients and solubilities of O ₂ , Li ₂ O ₂ and Li ₂ O Complete
D (Mar 15)	Synthesize oxidation-resistant carbons Complete
E (Jun 15)	<u>Go/No-Go</u> : Quantify e ⁻ /O ₂ and OER/ORR ratios for baseline carbon air electrodes Complete
F (Jun 15)	Quantify e ⁻ /O ₂ and OER/ORR ratios for oxidation-resistant carbon air electrodes Ongoing
G (Sep 15)	Measure diffusion coefficients and solubilities of H_2O , CO_2 , LiOH and Li_2CO_3 Ongoing
H (Sep 15)	Synthesize metals and metal alloys of high air electrode stability and/or catalytic activity Ongoing

Technical Accomplishments and Progress Milestone A & B (Demonstrate eutectic compositions containing Li⁺ having eutectic points below 120°C; measure ionic conductivity and Li⁺ transference number in eutectic compositions)

Eutectic	M.P. (°C)	t+	σ _{150°C} (mS/cm)
LiNO ₃ -KNO ₃	125	0.68	88
LiNO ₃ -KNO ₂ -CsNO ₃	90	0.28	115

Li/O₂ cell cycling at 120°C at 0.25 mA/cm² in LiNO₃-KNO₂-CsNO₃ eutectic

 Very low overpotential and coulombic efficiency improving with increasing cycle number are general characteristics of molten nitrate Li/O₂ cells

Technical Accomplishments and Progress Milestone C (Measure diffusion coefficient and bulk concentration of O₂, Li₂O₂ and

Li₂O at 150 °C in (Li,K)NO₃ eutectic)

$$i = \frac{nFAc_j^0\sqrt{D_j}}{\sqrt{\pi t}}$$

v ····	
$I_L = (0.620) n FAD^{\frac{2}{3}} w^{\frac{1}{2}} v^{\frac{-1}{6}}$	C

	Li ₂ O ₂	Li ₂ O	O ₂
Solubility (mM)	0.414	0.044	0.003*
Diffusivity (cm²/s)	6.63x10 ⁻⁹	4.25x10 ⁻⁶	2.42x10 ⁻⁶
			[*] in (Na,K)NO ₃

- Li₂O₂ and Li₂O salts exhibit enhanced solubility in the molten salt electrolyte compared to organic electrolytes (10⁻³ mM range in DMF, DMSO etc.)
- > Very low physical solubility of O_2 .

Future topic: Catalytic absorption of O₂ in melt

Technical Accomplishments and Progress

Milestone D (Synthesize oxidation-resistant carbons)

CNTs are grown via chemical vapor deposition using the thermal catalytic vapor-liquid-solid method, using Fe nanoparticles as the catalyst

> Boron-doped CNT samples were produced with flow rates of 1.4 / 1.3 / 0.1 / 2.8 SLPM of Ar / H_2 / C_2H_2 / 2% B_2H_6 respectively

TGA/MS analysis under O₂ flow demonstrates higher onset temperature for oxidation compared to undoped CNTs

Technical Accomplishments and Progress

Milestone E (Quantify e^{-}/O_2 and OER/ORR ratios for baseline carbon air electrodes)

Go/No Go Completed

Cycle	(e ⁻ /O ₂) _{dis}	(e ⁻ /O ₂) _{chg}	OER/ORR
1	2.0	2.0	0.66
10	2.0	2.0	0.86

Test Details

LiNO₃-KNO₃ dried under vacuum at 200 °C for >48 hrs; 1 cm diameter Super P carbon/PTFE cathode (~5 mg carbon) pressed on stainless steel mesh; Whatman glass fiber separator impregnated with ~100 μ L of electrolyte; Li metal anode; Current density = 50 mA/g_{carbon} (0.25 mA/cm²); Cycled in ultra pure O₂.

- Extremely low (<50 mV) overpotential is symmetric on discharge and charge</p>
- Pressure curves are symmetric on discharge and charge
- No electrolyte evaporation and no CO₂ evolution when cell is charged under vacuum with *in situ* mass spectrometry

Technical Accomplishments and Progress Milestone G (Ongoing) (Measure diffusion coefficients and solubilities of H₂O, CO₂, LiOH and Li₂CO₃ in (Li,K)NO₃ molten salt at 150 °C)

- LiOH, Li₂CO₃ (expected discharge products under ambient air) can be electrochemically oxidized near equilibrium potentials (3.4 V and 3.6 V, respectively)
- LiOH forms eutectic compositions with alkali metal nitrates. High solubility (4.3 M) may enable high capacity for cells operating in ambient air
- Stable solid electrolyte required for ambient air operation

 CO_{2}

Collaboration and Coordination with Other Institutions

> Lawrence Berkeley National Laboratory

 Prof. Bryan D. McCloskey: O₂ electrochemistry in molten salt systems and *in situ* gas analysis

California Institute of Technology

 <u>Prof. Julia R. Greer</u>: Materials synthesis and characterization (SEM/EDX, XRD, TEM, XPS)

Collaboration and Coordination with Other Institutions: Examples

- Equilibrium hexagonal shape of Li₂O₂, determined by surface energy calculations and Wulff construction, is observed for the first time in a Li/O₂ cell
- XRD shows Li₂O₂ and Li₂CO₃ after discharge and only Li₂CO₃ after full cycle

Future Work: Identify Non-Carbonaceous Air Electrode Materials

- Decomposition of amorphous carbon electrode causes cell failure, confirmed by post-mortem electrode analysis
- Possible reactions:
 - 1) $\text{Li}_2\text{O}_2 + \text{C} + \frac{1}{2}\text{O}_2 \rightarrow \text{Li}_2\text{CO}_3$
 - 2) $\text{Li}_2\text{O}_2 + \text{C} + \text{LiNO}_3 \rightarrow \text{Li}_2\text{CO}_3 + \text{LiNO}_2$
- Alternative electrode materials are needed to improve cycle life

Future Work: Manage Li₂O₂ Dissolution and Precipitation

- XRD analysis of carbon cathode following 50 cycles reveals substantial accumulation of electronically disconnected Li₂O₂
- SEM analysis shows large clusters (>10 µm in diameter) of Li₂O₂ (hexagonal morphology) deposited within glass fiber separator
- Uncontrolled diffusion and precipitation of soluble Li₂O₂ is a major cause of capacity loss. Proprietary methods to address this issue under development

Summary

- Project technical approach enables significant improvements in overpotential and stability in Li/air cells and may lessen certain system-level constraints
- > All project milestones and go/no-go decision points achieved to-date
- > Future, near-term technical objectives include:
 - · Identify non-carbonaceous air electrode materials
 - Manage Li₂O₂ dissolution and precipitation

Thank you very much to our project team members at Caltech and LBNL and to the DOE Office of Vehicle Technologies for your support!