AUTEC 2015 DOE Vehicle Technologies Program Review Presentation

Dramatically Improve the Safety Performance of Li ion Battery Separators and Reduce the Manufacturing Cost Using Ultraviolet Curing and High Precision Coating Technologies

Project Timeline:

Start Date: 10/01/2014 End Date: 9/30/2016 Percent Complete: 25%

Project Budget

DOE Share \$1,955,000 Cost share \$ 399,000 June 10, 2015 Dr. John Arnold, Principal Investigator

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Major Milestones

Milestone	Date	Status
Complete UV curable binder characterization	12/15/2014	Complete
Complete UV Curable Binder formulation corrected for printing applications	03/15/2015	Complete
Complete Printing Pattern Characterization	06/24/2015	In Process
Separator Coating Laboratory Testing Complete	08/24/2015	In Process
Complete Coated Separator Electrochemical Evaluation (Go/No-Go)	09/30/2015	Pending
Complete Initial Printing Press application Validation Tests	12/15/2015	Pending
Complete Final Printing Press Tests	08/20/2016	Pending

Why Ceramic Coated Separators?

Safety

- Reduce Possibility of Thermal Runaway
 - -High melt integrity
 - Low shrinkage
 - -High compression strength
 - -Less hot spot propagation

Why Ceramic coated Separators?

• Performance

- Reduce Dendrite Growth
- Increase Ion Path Tortuosity

Reduce Oxidation of Separator

– High Voltage Stability

Ceramic Coated Separator using UV Curable Binder Process

- Start with liquid UV curable mixture (oligomers, monomers, photoinitiators)
- Add ceramic particles
- Apply slurry coating
- UV cure liquid slurry
- 2-6 µm ceramic layer
- No Solvent

• High Speed Coating

Ceramic Coated Separator using UV Curable Binder

Status

UV binder chemistries identified

16-25 µm tri-layer and single layer separators successfully coated

Solid and patterned coatings applied

<10% decrease in porosity confirmed

Shrinkage improved over base separator

Laboratory Press Printing at 200 fpm

- Sub-micrometer Coating Thickness Control
- Thinner Coatings,
 - Less Weight
 - More Ion Flow
 - Reduced Cost
- Patterns for Higher Ion Flow
- Versatile Printing or Coating

Unexplored Technological Advantages

Printing in Machine Direction (MD) Reduces Shrinking

Printing in the Horizontal to MD Increases Tear Resistance

Print in Transverse Direction to Increases Some Tear Resistance and Some Shrinkage

Novel Printed Patterns

UV Ceramic Coatings have Excellent Adhesion and Porosity

Properties	Solid	Patterned	Base Film
Gurley	602	562	461
Shrinkage @ 100°C	<5%	<5%	<5%
Shrinkage @ 150°C	24%	28%	33%
Thickness	3 μm +16 μm	3 μm +16 μm	16 µm

UV Ceramic Coating on Trilayer Separator does not Interfere with Cell

Coated, c/5

NMC-Lithium Metal Half-Cell

NMC Half Cell

Charge Rate

Shut Down Coating On Single Layer PP Separator

Properties	Coated PPO	Uncoated PPO Separator
Gurley at 25°C	400	325
Gurley after 100°C	550	300
Gurley after 150°C	$\mathbf{\infty}$	825
Shrinkage @ 100°C	<5%	<5%
Shrinkage @ 150°C	20%	25%
Thickness	3 μm +16 μm	16 µm

Gurley Tester Measures Flow Through Coated and Uncoated Separator

- Established Feasibility of UV Binder for Ceramic Coated Separator
- 2-6 µm Thick Coatings and Patterns
- Minimum Increase in Gurleys Less Than 10%
- Demonstrated High Speed Printing (200 ft/min)
- Demonstrated Capable of Printing Patterns

- DOE for their funding contributions and advice
- Partners

