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Overview

Timeline
 Start: 2012
 End: 2016

Barriers
Development of a PHEV and EV 
batteries that meet or exceed 
DOE/USABC goals
A. Cost 
C. Performance

Chemical Sciences and Engineering Division, Argonne National Laboratory
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 Budget
 FY14: 575K
 FY15: 575K

Collaboration/Interaction
 U.S. Environmental Protection 

Agency
 B&W MEGTEC, GM, LGChem, PPG
 3M, Amprius, Envia



Relevance

 This modeling effort supports projects through the 
development and utilization of efficient simulation, analysis, 
and design tools for advanced lithium ion battery technologies. 

 This project provides assessment of the technology 
developments through projections of cost and performance at 
the pack level

 The EPA uses BatPaC to predict the cost of battery 
technologies for their 2017-2025 rule making

• Argonne updates BatPaC with cost inputs, modification of 
constraints, allow variable factory utilization, etc. 

 BatPaC is the only peer-reviewed LIB design and cost model 
available in the public domain
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Chemical Sciences and Engineering Division, Argonne National Laboratory; www.cse.anl.gov/batpac



Objectives and Approach
Objective: Develop and utilize efficient simulation and design 
tools for Li-ion batteries to predict:

– Precise overall and component mass and dimensions
– Cost and performance characteristics
– Battery pack values from bench-scale results

Approach: Design a battery based on power and energy 
requirements for a specific cell chemistry, feeding into a cost 
calculation that accounts for materials and processes required

– Optimized battery design to meet the specifications
– Cost based on a described manufacturing process

Approach: Reduce uncertainty in model predictions
– Update the default material and processing costs
– Develop higher fidelity models of the physical and electrochemical 

phenomenon, and manufacturing flow path (quantify energy needs)
– Validate results with OEMS, manufacturers, component developers

Chemical Sciences and Engineering Division, Argonne National Laboratory
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http://www.cse.anl.gov/BatPaC/index.html



BatPaC designs the battery and calculates its mass, 
volume, materials, heat transfer needs, and cost

Chemical Sciences and Engineering Division, Argonne National Laboratory
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P.A. Nelson, K.G. Gallagher, I. Bloom, D.W. Dees, Modeling the Performance
and Cost of Lithium-ion Batteries for Electric Vehicles, second ed., Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, 
IL USA, 2011. ANL-12/55.



Technical Accomplishments and Progress 
A new version (3B) of BatPaC has been released

 Added a table of results corresponding to USABC format
– Updated thermal management calculations
– Provided rapid gas discharge pathway from modules
– Reconfigured to enable cell cost calculations

 Updated costs of LFP cathode, current collectors, separator, 
and electrolyte

 Expect to release a newer version later this year
– Developing understanding of uncertainties

• Electrode thickness limitation, cathode material cost, etc.

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Milestone: Release new BatPaC version, Q2-FY15. 
– Status: Completed



The results have been tabulated to USABC format

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Data to Meet USABC Guidelines

Parameters in BatPaC
Number of cells per battery system 96
Number of modules per battery system 4
Number of packs per battery system 1
Battery system total energy storage, kWh 4.0
Battery power, kW 60
Nominal battery system voltage (OCV at 50% SOC),V 380
Battery capacity, Ah 10.6
Maximum current at full power, A 204
Cooling system power requirements, W 1094

USABC Parameters Battery 1
Mass, kg Volume, l Cost, $

Cells 28.1 12.1 1,237.18    
Additions at Module Level
     Module hardware Housing, thermal conductors, terminals 2.8 1.9 154.96      
     CSC Cell-to-cell balancing, sensors, and low-voltage wiring 0.8 250.18      
Addition at Pack Level
     Pack hardware Tray, compression structure, housing 4.5 122.74      
     Thermal management system Heaters, coolant 4.1 140.00      
     High voltage wiring Bussing between modules, and pack terminals 1.1 41.00        
     BMU & Disconnects Battery management, module balancing, 2-way comm 4.0 395.00      
Total Battery Pack(s) 45.2 30.7 2,341.06    
Exterior Cooling System Additions to AC for thermal management 7.0 2.8 120.00
Total Including Cooling System 52.2 33.5 2,461.06    
Cell Fractions of Total Pack 0.62 0.40 0.53

ContentsSubsystem



Technical Accomplishment and Progress
Analysis of a flex plant enabled an understanding of 
the cost learning curve
 A flex plant produces multiple types of batteries either in parallel lines or by 

periodically reconfiguring the equipment
 Analysis showed that a uniform electrode size (length and width) can be used 

to assemble different types of batteries
– Adjust electrode layer thickness, cell thickness, series/parallel, module size, …

 The power to energy ratio automatically determines the electrode thickness

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Vehicle type HEV PHEV10 PHEV40 EV

Vehicle range (miles)* 1.25 10 40 150

Target total energy (kWhTotal)* 1.0 2.86 11.4 35.3

Useable battery energy (% of total) 25 70 70 85

Target power for 10 seconds (kW) 35 65 130 150

Annual production volume (packs/year) 100,000 60,000 45,000 30,000

*based on 200 Wh/mile J of Power Sources, Volume 283, 1 June 2015, Pages 506–516
http://dx.doi.org/10.1016/j.jpowsour.2015.02.142



The flex plant lowers the cost of all batteries, with 
the most impact on the smaller HEV batteries

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Technical Accomplishments and Progress
Process for the recovery of the cathode solvent (NMP)

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Ongoing discussions on using aqueous 
solvents or eliminating solvents in 
electrode coatings

– Understand and quantify the impact 
of these changes in the plant
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The energy demand for the NMP drying and 
recovery process is quite significant

Chemical Sciences and Engineering Division, Argonne National Laboratory

11

Capacity Heat Load, kW

Scrubber

Filter

Zeolite 2-h cycle 49 kW

Air Heating Furnace 1,300 kW 1,300 kW

NMP Storage Tank 350 m3

Condenser 2,600 m2 1,795 kW

Distillation Column 173 kW

Air-to-Air Heat Exchanger 3,900 m2 1,170 kW

Chiller 170 tons 598 kW

Blower 19 m3/s

Dryer 56 kW 56 kW

Annual Energy Required 15 GWh/yr

Assumptions
 Plant produces 100K packs of 4 kWh, 

10.5 Ah PHEV batteries per year
 10.1 million cells per year
 NMP required: 1.8 million kg/year
 300 days per year, 6 year plant life
Preliminary Results
 98.9% NMP is recovered
 8.5 kWh/kg-NMP
 Cost calculations indicate

– Installed capital cost = $2.6 M
– Cost of NMP recovery 

• $1.40/kgNMP

• $24/pack
*20April2015



Technical Accomplishment and Progress
The Dry Room energy demand

Assumptions
 4000-m2 x 5-m high
 Air Turnover: 6 per hr
 Combination of cooling to 

6°C and a desiccant to 
remove moisture
 Dry room exit moisture 

content < 100 ppmv
 20% air discharged
 Moisture entry into Dry 

Room via
– Personnel
– Negative electrode
– Air lock doors 

Chemical Sciences and Engineering Division, Argonne National Laboratory

12
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Maintaining the Dry Room is an energy intensive 
step in the battery manufacturing plant 

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Pre-Cool to 6°C, kW 505

Cool to 10°C, kW 976

Heat to Dry Room T (21°C), kW 234

Desiccant Regen Heat, kW 1372

Annual Energy Required , GWh/yr 17.8

Blower Power, kW 7

Total Refrigeration Power, kW 423

Cost of Electricity (8¢/kWh), $/year $301K

Total Thermal (NG) Energy, kW 1,606

Cost of Natural Gas (2¢/kWh), $/year $281K

Assumptions
 Plant produces 100K packs of 4 kWh, 

10.5 Ah PHEV batteries
 300 days per year, 6 year plant life
 30 people working 24 hours in the room 

each day
 Doors opened 120 times per day
 Negative electrodes contain 0.05% H2O
Preliminary Results
 Dry room exit gas contains 54 ppm H2O
 Cost calculations indicate

– Installed capital cost = $2.5 M
– Cost of Dry Room adds $27/pack

*28April2015



Technical Accomplishment and Progress
Process for production of NMCxxx by coprecipitation

Chemical Sciences and Engineering Division, Argonne National Laboratory
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 NMC333 production = 4,000 kg/day
 320 days operation per year

CSTR-1
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Filtrate

MSO4 + Na2CO3 = MCO3↓ + Na2SO4

M = Ni, Mn, Co

T, P 95°C, 1 atm

MSO4 Conversion 95-99%

Reactant Feed Rate 35,800 Liter/day

Residence Time 10 hours

Reactor Volume 18 m3

Heat Load (Cooling) 43 kW



The product cost is most sensitive to the cost of 
raw materials. 

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Heat Load
Sintering Furnace, kW 345
Water Heater, kW 129
Vacuum Dryer, kW 50
Reactor Cooling, kW 43
Energy Demand, GWh/yr 4.0

Cost
Purchased Equipment, K$ $910
Total Capital Investment, K$ $3,319
Metal Sulfate, K$/day $21-36
Lithium Carbonate, K$/day $14
Total Raw Materials, K$/day $35-50

Product Cost, $/kgNMC $27-38
22April2015
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Collaboration

 Support EPA in using BatPaC for regulatory analysis
– Updated the model in response to peer review and state-of-the-

art in battery manufacturing and pack design
– EPA has adopted BatPaC for determining cost of LIB in hybrid 

and electric vehicle applications
– Share incremental improvements in BatPaC capabilities

 Project impact of improved components from DOE funded 
developers (3M, Amprius, Envia)

 Validate model results with GM model/experience
 Develop and validate NMP recovery process: B&W MEGTEC

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Proposed Future Work

 Study upstream processes and steps in the battery plant to 
bring greater fidelity in energy and cost estimates
– Update optimum electrode thickness calculation
– Complete the cost calculations for the NMP recovery, dry room, and 

cathode development
– Update BatPaC cost estimates based on supporting models 
– Include cathode material production processes
– Explore the energy demands of other steps in the manufacturing 

process, e.g., electrode coating, formation cycling, etc.

 Support EPA calculations 
 Include volume expansion mitigation designs (foam or springs, etc.)
 Incorporate use of a blended cathode in the model
 Evaluate fast charging of EV batteries

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Summary

 The BatPaC spreadsheet model is a resource for DOE, EPA, 
and technology developers
– Projection to the pack level performance helps understand the impact 

of component technology

 A flex plant provides economy of scale and lowers the cost of 
batteries

 Modeling the various processes in the battery manufacturing 
plant helps R&D decisions for cost reduction
– Drying of NMP and Dry Room operations are very energy intensive
– For the NMC cathode, the raw materials represent the largest cost

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Summary Accomplishments

 A new version of BatPaC has been released  (Slide s7-8)

– Another update due in 2015.

 Completed analysis of the benefits of a flex plant (Slides 9-10)

 Continuing to support EPA calculations
 3 process models have been set up to support BatPaC

– NMP Drying and Recovery (Slides 11-12)

– Dry Room (Slides 13-14)

– Cathode material production (Slides 15-16)

Chemical Sciences and Engineering Division, Argonne National Laboratory
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