

DOE AMR Review

Cree, Inc., EE0006920 "88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology"

June 9, 2015

Jeff Casady, Cree Business Development & Program Manager

Jeff Casady, Vipindas Pala, Brett Hull, Scott Allen, John Palmour, Craig Capell, Don Gajewski - Cree, Inc. Kraig Olejniczak, Ty McNutt – APEI, Inc. Chingchi Chen, Ming Su – Ford Motor Company

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID # EDT073

Project Overview

Timeline

 Project Start – Dec. 11, 2014 Project Complete – Dec. 10, 2016 5% Complete 	 Cost (A) – Target < \$8/kW by 2020 Weight (C) – SiC expected to improve power density (>1.4kW/kg by 2020) Reliability & Lifetime (D) – SiC ↓ FIT 10x Efficiency (E) – SiC expected to improve light-load efficiency and vehicle range 			
Budget	Partners and Subcontractors			
 Govt. Share: \$1,937,752.00 Cost Share : \$2,107,744.00 Total : \$4,045,496.00 	 Cree, Inc. lead; 900V SiC power MOSFET APEI – sub; SiC power modules & inverter 			

Barriers

Ford

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

2

Relevance of program targets at macro level

- Depending on topology, x-EV drive system, and motor, the primary target is to make x-EV more affordable through better fuel efficiency, lower system cost, and lower weight
 - 900V, 10mΩ SiC MOSFET developed, sampled and AEC-Q101 qualified at chip level
 - At low-frequency, the SiC MOSFET has better light-load efficiency than Si IGBT
 - Better efficiency leads to reduced cooling costs
 - Record low switching losses expected for 900V semiconductor switch
 - Avalanche energy expected to be 10X that of Si components for better reliability

Metrics	DOE	FUPET (Japan	Delphi	Cree/APEI/FORD targets
	Specified	consortium w Nissan)		
Semiconductor	Si or WBG	1200 V SiC FET @ 3.1 mΩ·cm ²	Si IGBT	900 V SiC FET @ 2.2 mΩ·cm ²
Year	2010	2011	2013	2016
Cost (100k units)	\$5/kW	-	\$5/kW	< \$5/kW
Specific Power	12 kW/kg	-	17 kW/kg	> 22.5 kW/kg
Power Density	12 kW/L	30 kW/L*	15 kW/L	>21.5 kW/L

*- doesn't include controllers, sensors, or gate drivers & power supplies. Ref Materials Science Forum Vols. 740-742, pp 1081-1084, (2013) Trans Tech Publications, Switzerland

3

Relevance to Commercialization

Budget Period	Start/End Date	Milestone	Type Description		Status
1	12/15/2014 – 12/14/2015	Characterization of third optimization of wafer lot of 900 V SiC MOSFET.	Go/No-Go Go/No-Go Test the third power MOSFET lot and measure performance against the target specifications.		On-track. First 900V, 10mΩ SiC MOSFET lot in fab with ECD of
2	12/15/2015 – 12/14/2016	Single-phase traction drive demonstration.	Technical	Perform single-phase traction drive demo using 900V, 200A, ½ bridge power modules and evaluate impact of SiC performance on automotive traction drive system.	Not started. This is for FY16.

Interim Milestones are defined in the SOPO and PMP

Approach

Task #	900V, 10m Ω SiC MOSFET development & qual	Wafers	Start	ECD
1.1	Die centering – lot #1	9	Feb 2015	June 2015
1.1	R _{DSON} vs t _{SC} - lot #2	6		Sept 2015
1.1	Re-center lot based on feedback (Go / No-go milestone) – lot #3	6		Nov 2015
1.2	Pre-qual lot – lot #4	6		Jan 2016
1.2	Qualification Lot #1 – lot #5	12		Mar 2016
2.1	Qualification Lot #2 – lot #6	12		Apr 2016
2.1	Qualification Lot #3 – lot #7	12		May 2016
2.1	Qualify 900V, 10m Ω SiC MOSFET chip by AEC-Q101 standards			Nov 2016

Task #	900V ½ bridge power module develop & qual	Modules	Start	ECD
1.3	Assemble, characterize and benchmark power modules (900V, >200A, ½ bridge)	6	June 2015	Sept 2015
2.2	Assemble, characterize and benchmark power modules (900V, >200A, $\frac{1}{2}$ bridge)	70	May 2016	Aug 2016
2.2	Qualification of module using a mix of JEDEC and AEC-Q101 standards		Aug 2016	Dec 2016

Task #	88kW peak traction drive demo	Modules	Start	ECD
2.3	Single phase traction drive demo	5	June 2015	Sept 2015
2.3	Three phase traction drive demo	25	May 2016	Aug 2016
2.3	Benchmark 900V SiC based technology with competing technologies		Aug 2016	Dec 2016

Approach - 900V, 10 m Ω SiC MOSFET Estimated R_{DSON} vs T

Renewable Energy

Approach – MOSFET Qualification Plan at 175 $^{\circ}\text{C}$

- Die to be qualified at a $T_{J,Max}$ of 175 $^{\circ}C$ under this program
- Reliability at 200 °C will be investigated; qualifying at 200 °C will be a stretch goal
- AECQ101 die level qualification tests in TO-247

Test	Stress Conditions	Duration	Wafer lots sampled	Total devices sampled
HTGB	VGS = 18 V, VDS = 0, Ta=175 °C	1000 hrs	3	231
H3TRB	85 °C, 85% RH, VDS = 100 V, VGS=0	1000 hrs	3	231
HTRB	VDS = 720 V, VGS = 0, Ta = 175 °C	1000 hrs	3	231
тс	-55 °C / +175 °C, JESD22-A104 condition H, soak mode 1	1000 cycles	3	231
IOL	5 min on / 5 mins off, $\Delta Tj \ge 100 \text{ °C}$, Tmax $\ge 175 \text{ °C}$	6000 cycles	3	231
ESD-HBM	Classification at 25 °C	n/a	1	5
ESD-MM	Classification at 25 °C	n/a	1	5
ESD-CDM	Classification at 25 °C	n/a	1	5

Approach - 900V SiC MOSFETs : Avalanche Ruggedness

- Low defect density material and processing allows SiC MOSFETs to withstand avalanche energy
- Stretch goal will be to avalanche rate 900 V SiC MOSFETs

Preliminary Characterization

9

Technical Accomplishment - 900V, 65m Ω SiC MOSFET

- Target applications
 - ON-board EV chargers
 - Switch mode power supplies
 - Solar inverters
 - High power DC/DC converters
- AECQ101 qualification effort in progress
 - Expected to be completed in Q2 2015
- Commercial release planned in 2015

100mm 900V, 65 m Ω SiC MOSFET wafer

Technical Accomplishment – 150°C JEDEC qualification

- 900V, 65 m Ω JEDEC Qualification Status (TO-247 Package)
- Qualification complete

CREE 🚓 🗙 APE

Test	Stress Conditions	Duration	Wafer lots sampled	Total devices sampled	Status
HTGB	VGS = +15 V, VDS = 0, Ta=150 °C	1000 hrs	3	75	Complete
HTGB	VGS = -5 V, VDS = 0, Ta=150 °C	1000 hrs	3	75	Complete
H3TRB	85 °C, 85% RH, VDS = 100 V, VGS=0	1000 hrs	3	75	Complete
HTRB	VDS = 720 V, VGS = 0, Ta = 150 °C	1000 hrs	3	75	Complete
тс	-55 °C / +150 °C, JESD22-A104 condition H, soak mode 1	1000 cycles	3	75	Complete
IOL	5 min on / 5 mins off, ∆Tj ≥ 100 °C, Tmax ≥ 150 °C	6000 cycles	3	75	Complete
ESD-HBM	Classification at 25 °C	n/a	1	5	Complete
ESD-MM	Classification at 25 °C	n/a	1	5	Complete
ESD-CDM	Classification at 25 °C	n/a	1	5	Complete

Technical Accomplishment – smaller chip demonstrated

- Full turn-ON achieved at +15 V Gate Bias
 - Convenient gate drive using commercial IGBT and MOSFET drivers. —

Energy Efficiency &

Renewable Energy

Technical Accomplishment – lower R_{DSON} vs T demo

- 900V SiC MOSFET has a low temperature coefficient of resistance compared to Silicon and GaN
- Enables higher power ratings

Technical Accomplishment – 6X lower R_{DSON} · E_{OSS}

SiC is <u>4x Better at 25 °C</u> and <u>6x Better at 150 °C</u> due to lower R_{DS,ON} temperature coefficient

Ford

CREE

Technical Accomplishment – ultra low measured E_{sw}

Measured Switching Energy compared to Current

- New project
- No reviewer comments from last year

• None for public disclosure

- AEC-Q101 qualification of lowest R_{DSON} SiC power transistor (10m Ω) of any voltage range to date
- Inverter demo single phase and three phase
- Verifying expected light load efficiency improvement from SiC in drive train
 Inverter Loss Estimation Tool

CREE

WBG drive reduces inverter losses, especially at light load

Energy Efficiency & Renewable Energy

- In 2015:
 - Finish three lots of 900V, $10m\Omega$ SiC MOSFETs and sample to automotive OEM and Tier One suppliers
 - Build 900V, 200A, ½ bridge power module using new SiC MOSFET chips
 - Simulate the light load efficiency in the drive cycle using the new 900V
 SiC MOSFET
- In 2016:

CREE

- AEC-Q101 qualification of 900V, 10mΩ SiC MOSFETs at chip level
- Build 70 ½ bridge power modules using new 900V SiC MOSFETs
- Test MTTF and IOL of SiC MOSFET based power modules
- Perform single phase and three phase inverter demo's using new 900V
 SiC MOSFET power modules

Energy Efficiency &

Renewable Energy

- Cree will develop and optimize a 900V, 10 m-Ohm SiC MOSFET aimed at x-EV applications, based on specifications provided by Ford and other automotive Tier One suppliers.
 - 200-600 MOSFETs for external sampling from optimization lots.
 - 1,100 MOSFETs to APEI for module assembly from qual lots.
 - Cree will qualify the optimized SiC MOSFET <u>chip</u> according to AEC-Q101 (~1,500 MOSFETs)
- APEI will construct 900V, 200A, ½ bridge power modules using the 900V SiC MOSFET and benchmark against other technologies. Benchmark includes performance & reliability.
 - APEI will valuate the ½ bridge power module in an 88 kW peak power traction drive inverter for x-EV.

Energy Efficiency &

Renewable Energy

• Ford will provide technical input on system specifications, and evaluation of new 900V SiC products developed.

CREE

70 modules

~3k MOSFETs