

Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

U.S .Department of Energy Annual Merit Review

P.I.: John P. Rugh
Presenter: Daniel Leighton
National Renewable Energy Laboratory

June 17, 2014

Project ID: VSS046

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project Start Date: FY11
Project End Date: FY14
Percent Complete: 80%

Budget

Total Project Funding (to date): \$ 1,575 K *

Funding for FY13: \$ 575 K *

Funding for FY14: \$ 250 K

Partner In-Kind Cost Share: \$ 375 K **

Barriers

- Complexity: integrated multi-valve system for multiple thermal loads
- Low temperature operation: cabin heating at very low temperatures
- Front-end heat exchanger frosting: heat pumping below 0°C ambient

Partners

- Interactions/collaborations:
 - Delphi
 - Halla Visteon Climate Control
- Project Lead: NREL

^{*} Shared funding between VTO programs: VSST, APEEM, ESS

^{**} Not included in total

Relevance: Project Objectives

- Combine electric drive vehicle (EDV) fluid loops to reduce weight, cost, and energy consumption
- Integrated thermal solution to increase EDV range at national level

Recent focus: bench testing

Relevance: Support Broad VTO Efforts

DOE VTO Multi-Year Program Plan

 "... development of advanced vehicles and components to maximize vehicle efficiency ..."

EV Everywhere Grand Challenge

 A goal of EV Everywhere is to have automobile manufacturers produce a car with sufficient range that meets consumers' daily transportation needs

Combined Fluid Loop (CFL) Project

 Develop CFL system to maximize vehicle efficiency and range by reducing auxiliary loads and improving battery thermal management

Relevance: VTO Integration

Approach/Strategy: Overview

- Evaluate with 1-D thermal model
- Bench test verification of performance and address technical barriers
- Collaborate with industry on vehicle-level demonstration

Approach/Strategy: Challenges

- Investigate performance over wide range of conditions
- Enable heat pump operation and waste heat recovery
- Identify efficiency versus complexity trade-offs to develop solutions for cost reduction and EDV range improvement

Impact of Temperature on Range

*ANL climate chamber dynamometer testing of stock 2012 Nissan Leaf

ANL = Argonne National Laboratory AVTA = Advanced Vehicle Testing Activity

Milestones

Month/Year	Description
Q3 June 2014	 Milestone: Complete modifications of bench test apparatus for cold weather operation and test the CFL concept in a cold environmental chamber
Q4 Sept. 2014	Milestone:Submit a summary of the project results in the DOE annual report format

Technical Accomplishments and Progress: Overview

March 2013 to March 2014 – Bench testing

- Constructed bench test apparatus
- Integrated vehicle, power electronics, electric motor, battery, and cabin models into LabVIEW data acquisition and control system
- Constructed CFL system using prototype heat exchangers from Delphi and an electric compressor from HVCC
- Completed hot weather steady-state testing
- Near completion of hot weather drive-cycle testing

Technical Accomplishments and Progress: Test Apparatus

 Designed for hardware-in-the-loop drive cycle testing with vehicle load simulation

HX = heat exchanger PTC = positive temperature coefficient WEG = water/ethylene glycol

Technical Accomplishments and Progress: CFL System

 Allows multiple configuration strategies, including waste heat recovery and heat pumping

Technical Accomplishments and Progress: Test Apparatus

 Most important technical accomplishment was successful design, construction, and operation of CFL test bench

Technical Accomplishments and Progress: Steady-State Cooling

 Stable system operation, reasonable energy balances and errors, and performance meeting expectations

*Preliminary

 Cabin pull-down penalty due to experiment thermal mass – real system more compact

UDDS = Urban Dynamometer Driving Schedule

• PEEM temperatures within thermal limits, ESS control strategy needs further investigation

HWFET = Highway Fuel Economy Driving Schedule

 PEEM cooling <1% penalty to range, ESS cooling penalty significant at higher ambient temperatures

Responses to FY13 AMR Reviewers' Comments

Comment:	Consider defog and defrost
Response:	 Without vehicle cabin, direct testing is not possible, but heating capacity matches conventional vehicle If vehicle test is pursued, direct evaluation is possible
Comment:	Collaborate with vehicle OEM
Response:	 Bench testing in close collaboration with Delphi Interest from Delphi and a vehicle OEM to develop technology for vehicle demonstration
Comment:	Characterize baseline for "extreme" environments
Response:	 Bench testing at ambient temperatures from -30°C to 43°C

Collaboration: Delphi

 Delphi provided prototype refrigerant-to-coolant, and coolant-to-air heat exchangers

Front-end Heat Exchanger

8

Collaboration: Halla Visteon Climate Control

 Halla Visteon Climate Control provided high-voltage DC electric compressor capable of heat pump operation

Collaboration: Summary

Industry

- Delphi
- Halla Visteon Climate Control

VTO Tasks

- Advanced Power Electronics and Electric Motors
 - PEEM thermal models
- Vehicle Systems
 - FASTSim vehicle powertrain model
- Energy Storage Systems
 - Battery thermal and efficiency (voltage vs. temperature) models

Remaining Challenges and Barriers

Complexity

 Must define trade-offs between complexity and efficiency for industry buy-in

Low temperature operation

 Cold weather testing must demonstrate sufficient heat pump performance when supplemented with waste heat

Front-end heat exchanger frosting

Testing must measure impact of hot coolant defrost cycling

Proposed Future Work

Remainder of FY14

- Complete hot weather drive cycle testing
- Conduct cold weather drive cycle testing
- Identify best practices for system design and control
- Analyze technology impact on EDV range and thermal management

FY15 and beyond

 Work with industry partners (suppliers and an OEM) to demonstrate technology at vehicle level

Summary

- Designed and built test apparatus to validate potential of CFL to reduce cost, weight, and volume of thermal system while increasing vehicle range
- Hot weather testing almost complete, cold weather testing to begin soon
- Looking to work with industry partners on a vehiclelevel demonstration to develop the technology and reduce national energy consumption

Acknowledgments and Contacts

Special thanks to:

Vehicle Technologies Office U.S. Department of Energy Lee Slezak David Anderson

Industry collaborations:

Delphi Halla Visteon Climate Control

NREL Team:

Kevin Bennion
Cory Kreutzer
Daniel Leighton
John P. Rugh
Jeff Tomerlin

For more information:

Daniel Leighton
National Renewable Energy Laboratory
daniel.leighton@nrel.gov
303-275-4489

John P. Rugh
National Renewable Energy Laboratory
john.rugh@nrel.gov
303-275-4413

26

Photograph Credits

- 1) Daniel Leighton, NREL
- 2) John P. Rugh, NREL
- 3) Daniel Leighton, NREL
- 4) Mike Simpson, NREL
- 5) Daniel Leighton, NREL
- 6) Daniel Leighton, NREL
- 7) Daniel Leighton, NREL
- 8) Daniel Leighton, NREL
- 9) Daniel Leighton, NREL
- 10) Daniel Leighton, NREL

Technical Back-Up Slides

Cooling Mode (Active ESS Cooling)

Cooling Mode (Passive ESS Cooling)

"Free" Cooling Mode

Mild Heating Mode (Only Heat Recovery)

Heating Mode

