

Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

PI: Tim Donley

Cooper Tire & Rubber Company June 19, 2014

Timeline

- Project start date: Oct. 1, 2011
- Project end date: Sept. 30, 2014
- Project complete: 85%

Budget

- Total project funding: \$3,679,309
 - DOE share: \$1,500,000
 - Contractor share: \$2,179,309
- Funding received in FY11 \$ 0
- Funding received in FY12 \$ 422,591
- Funding received for FY13 \$ 529,546
- Funding up to April FY14 \$ 173,478

Overview

Barriers

- 1) Cost / Premium Product
- 2) Manufacturability

Partners

• Teijin: Project Lead – Botond Szalma

Project Objectives - Relevance

Overall Program Objective:

To develop a new class of tires in the replacement market that improves fuel efficiency by a minimum of 3% and reduces overall tire weight by 20%.

- Phase I
 - Evaluate the following six technologies individually for contribution to fuel efficiency and/or weight savings:
 - 1) Partial replacement of carbon black and/or silica with nano-fiber materials
 - 2) Ultra-light weight tire bead bundle
 - 3) Ultra-light weight tire belt package
 - 4) Ultra-light weight inner liner (barrier film liner)
 - 5) Formulation options for ultra-long wearing and low hysteresis tread compound
 - 6) New design of low hysteresis, energy efficient tire profile
 - Each technology will be assessed for manufacturability throughout the development process.
- Phase II
 - Combine technologies that show potential to meet program goals.

COOPERTIRES

Approach 1: Nano-fiber Reinforcement

Strategy

- Evaluate nano-fiber reinforcement materials as a partial replacement for carbon black and/or silica to lower compound hysteresis.
 - Investigate nano-fiber in masterbatch to improve dispersion.
 - Identify fiber materials to use directly into compound mixing.

Milestones - Status

- Develop tire compounds from fiber materials that provided lower hysteresis – 3rd Qtr 2013 (Completed)
- Conduct 1st tire test program 4th Qtr 2013 (Completed)
- Identify compounds with lower hysteresis for Phase II 1st Qtr 2014 (Completed)
- Execute Phase II tire program 2nd Qtr 2014 (In Progress)
- Identify coupling agent to improve properties of nano-fiber masterbatch 3rd Qtr 2014 (In Progress)

• Go/No-Go

Demonstrate lower hysteresis tire compounds contribute to lower rolling resistance tires – 1st Qtr 2014. (Completed)

Accomplishments – Fiber Reinforcement

COOPERTIRES

Approach 1: Fiber Reinforcement

- Identified two fiber materials that could partially replace carbon black and/or silica to reduce compound hysteresis.
- Produced and tested tires to verify rolling resistance reduction.
- Identified low hysteresis compounds for Phase II.

45.0% 39.7% 37.3% 40.0% 31.8% 35.0% 30.0% 24.4% 25.0% 20.0% 15.0% 10.0% 5.0% 0.0% Compound 1 Compound 1 Compound 2 Compound 2 Fiber 2 Fiber 1 Fiber 2 Fiber 1

Tire Rolling Resistance/Weight Results

	Wt	RRc	% Wt	% RR
Tire w/Standard Compounds	23.33	9.34		
Tire w/Fiber 1 Compounds	22.77	8.68	2.40%	7.00%
Tire w/Fiber 2 Compounds	22.87	8.81	1.97%	5.62%

This presentation does not contain any proprietary, confidential, or otherwise restricted information. 5

Hysteresis Reduction over Standard Compound

Approach 2: Light Weight Bead Bundle

Strategy

- Investigate alternate light weight materials as replacements for standard steel beads.
 - High strength pre-manufactured aramid bead rings.
 - Aramid cord utilizing the same bead manufacturing process as steel cord.

Milestones - Status

- Conduct a tire program with 2nd generation aramid beads with similar strength to steel beads – 1st Qtr 2013 (Completed)
- Perform additional tire tests with the 2nd generation aramid beads 3rd Qtr 2013 (Completed)
- Execute another tire program with 2nd generation aramid beads 4th Qtr 2013 (Completed)

Go/No-Go

Evaluate tire performance and manufacturing feasibility in comparison to steel beads – 1st Qtr 2014 (Completed)

Accomplishments

Approach 2: Light Weight Bead Bundle

- Completed two test programs using aramid beads from both manufacturing processes.
 - Tested and passed Burst Strength testing.
 - Tested and passed high speed and endurance wheel testing.
 - Tested and passed Rim Slip testing.
 - Bead Push off testing did not meet DOT requirements.
 - Handling was not acceptable.
 - Limited tire testing planned for Phase II.
- Technology needs further development before being a viable candidate.
 - Limited tire testing planned for Phase II.

Approach 3: Light Weight Belt Package

Strategy

Evaluate alternate light weight materials as replacements for standard steel belts.

Milestones - Status

- Conduct 3rd tire test program with some design changes to improve performance. – 4th Qtr 2013 (Completed)
- Evaluate aramid belts in program outside the DOE development. 2nd Qtr 2014 (Completed)
- Execute Phase II tire program 2nd Qtr 2014 (In Progress)

• Go/No-Go

Aramid belts pass all DOT requirements - 1st Qtr 2013 (Completed)

Approach 3: Light Weight Belt Package

- Completed five tire programs using aramid belts.
 - Three as part of DOE development.
 - Two as part of other development work.
- Aramid belt construction chosen for Phase II.

Accomplishments

3 rd Tire Progra	m: "BG" Mold Pro	ofile
	Weight Savings	RR Savings
Control - Steel Belt		
Aramid Belt	9.0%	6.7%
Aramid Belt – Overwrap Change	8.4%	6.4%
Aramid Belt - Belt Angle Change	9.0%	7.4%
Aramid Belt - Monoply	13.7%	8.0%

Approach 4: Barrier Film Liner

Strategy

Evaluate a light weight barrier film material as a replacement for standard halo-butyl inner liner.

Milestones - Status

- Conduct 2nd tire program to further evaluate production process issues and to evaluate film performance. – 1st Qtr 2013 (Completed)
- Build 3rd tire program to evaluate film performance. 1st Qtr 2014 (Completed)
- ➤ Test tires from 3rd tire program 2nd Qtr 2014 (Completed)

• Go/No-Go

Determine if film can meet manufacturing and performance requirements needed to meet program goals. – 2nd Qtr 2014 (Completed)

Accomplishments

Approach 4: Barrier Film Liner

- Completed 3 tire builds investigating 3 different versions of barrier film material.
 - Failed aggressive endurance test with fatigue cracking in the shoulder.
 - Observed improvement from version 1 to version 2 barrier film.
 - Lab data indicated version 3 would out perform version 2.
 - Wheel testing resulted in worse fatigue cracking with version 3 than version 2.
 - Barrier Film has resulted in poorer rolling resistance.
- Technology needs further development before being a viable candidate.
 - Limited tire testing planned for Phase II.

	Endurance Test	Liner Cracking	Weight (lbs)
Rubber liner	100%	None	2.1
Version 1	53%		0.6
Version 2	100%	Moderate	0.6
Version 3	74%		0.6

Approach 5: Ultra-long Wearing Tread

COOPERTIRES

- Strategy:
 - Develop technologies for an ultra-long wearing and ultra-fuel efficient tread compound to reduce tire weight and rolling resistance.

Reduced Tread Depth

Milestones – Status

- Perform lab compound studies to balance traction, wear and rolling resistance – 2nd Qtr 2013 (Completed)
- Carry out lab compound studies combining the new polymer and new silane technologies from the 1st tire program – 3rd Qtr 2013 (Completed)
- Conduct 3rd tire test program to evaluate the combination of new polymer and new silane technologies – 3rd Qtr 2013 (Completed)
- Execute Phase II tire program 2nd Qtr 2014 (In Progress)

• Go/No-Go

Determine if compound formulation is optimized to meet all tire performance goals. – 1st Qtr 2014 (Completed)

Approach 5: Ultra-long Wearing Tread

- Investigated 4 tread compounds in a 3rd tire program.
- Compound EX #2 chosen for the Phase II.

Accomplishments

Data from previous year

Compound Evaluation 3rd Tire Program

			Wet	Snow			
Mold Profile	Compound	RR*	Traction	Traction	Wear		
CS4 - 12/32"	Control						
New Profile - 9/32"	Ex #1	16%*	2.5%	-4.8%	7.3%		
New Profile - 9/32"	Ex #2	20%*	2.5%	4.0%	5.3%		
New Profile - 9/32"	Ex #3	19%*	4.0%	2.0%	-6.8%		
New Profile - 9/32"	Ex #4	16%*	3.0%	-9.5%	0%		
* RR change only includes compound difference							

Approach 6: Low Hysteresis Tire Profile

- Strategy:
 - Develop and use new Finite Element Analysis (FEA) Model to predict Rolling Resistance (RR)

• Milestones – Status:

- Perform design of experiments on tire profile 1st Qtr 2013 (Completed)
- Design and build new mold using results from design of experiments 2nd Qtr 2013 (Completed)
- Build and test tires from new mold profile in conjunction with tread compound evaluation – 3rd Qtr 2013 (Completed)
- Execute Phase II tire program 2nd Qtr 2014 (In Progress)

• Go/No-Go

Determine if mold profile is fully optimized and meets required performance criteria. – 4th Qtr 2013 (Completed)

Accomplishments

Approach 6: Low Hysteresis Tire Profile

- Using the new FEA rolling resistance model, two additional molds were developed for tire testing.
 - Model predicted a slight improvement over "BG" Profile.
- Identified mold profile for Phase II.

Mold Wear Comparison

Rolling Resistance/Weight Results							
	Tread	RR %	Wt. %				
Mold Profile	Compound	Improvement	Improvement				
CS4 - 12/32"	control	0.0	0.0				
"BG" Profile - 9/32"	control	11.6%	10.2%				
Profile 7 - 9/32"	control	8.9%	10.0%				
Profile 8 - 8/32"	control	14.5%	14.9%				

Collaboration

National Renewable Energy Laboratory:

- Subcontract agreement finalized in March 2012 to collaborate on light weight tire FEA model.
- As a result of advancements in Cooper's FEA capabilities, collaboration with NREL was completed in 2013.

<u>Teijin:</u>

 Collaboration is ongoing with Teijin to develop aramid belts and aramid beads.

<u>Other:</u>

• Cooper continues to collaborate with multiple material manufacturers to develop and improve tread, fiber and inner liner technologies.

FY2013 Reviewer's Comments

Reviewer comment: "the project could benefit from collaboration in the area of material development, consumer feedback, and other areas."

- <u>Response:</u> Throughout the program there has been collaborations with many others companies as Cooper strives to develop new technology to meet the goals of this program.
- <u>Reviewer comment:</u> "it seemed that the decision points were not followed in the development of some of these technologies and planning for future work."
- <u>Response:</u> Each of the technologies has gone through a rigorous stage gate process and decision points were used to ensure the success of the program.

Future Work FY14

Approach 1: Fiber Reinforcement

- Continue to investigate nano-fiber masterbatch technology.
 - Continue to develop coupling agent technology.
 - There is still the potential for a meaningful hysteresis improvement.

Approach 3: Light Weight Belt Package

- Conduct follow up tire program to improve aramid belt performance.
 - Investigate construction changes to improve performance.
 - The belt coat compound is also under development as part of the investigation.

Future Work FY14

Phase II Tire Program

- Build 3 sets of projects to combine the technologies.
- A small amount of tires will be procured with Barrier Film and Aramid Beads for limited testing to investigate material interactions.

			Veight	Tire				Performance
	RRC*	Re	duction	Weight	Δ WT %	Δ RR % *	Risk	Risk
CS4 Control	10.8			26.0				
Mold/Tread	7.85 *		2.5	23.5	9.6%	27.3%	Low	Low
Fiber Reinforced Compounds	7.35 *		0.5	23.0	11.5%	31.5%	Low	Low
Aramid/Monoply	6.90 *		3.2	19.8	23.9%	34.3%	Med	Low
Barrier Film	7.25 *		1.5	18.3	29.6%	32.9%	High	High
Aramid Bead	7.25 *		0.4	17.9	31.2%	32.9%	High	High
* Estimated Results								
Achieve Program Objectives								

Summary

- Testing conducted to date indicates Cooper is on track to meet the • goals of 20% weight reduction and 3% fuel savings.
- Phase II is on track for evaluation during 2nd Quarter of 2014. •

Features	Contribution To Weight Reduction	Contribution To Low RR
Light weight Nano-fiber	1%-2%	5%
Light weight Bead	2% - 4%	Minimal
Light weight Belt	8%-14%	4%-6%
Light weight Inner Liner	8%	- 5% to -10%
Ultra-Long Wearing & Ultra-Low RR Tread	1%-2%	15%-20%
Low RR Tire Profile	8%-10%	10%-12%
Total	~20%	~ 30%