

Understanding and Modifying Cathode / Electrolyte Interfaces

Jie Xiao (PI) Ji-Guang Zhang

Vehicle Technologies Annual Merit Review

June 12th, 2019

Project ID #bat407

PNNL is operated by Battelle for the U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Start date: Oct. 2018

End date: Sept. 2021

Percent complete: 20%

Budget

- ► Total project funding: \$1,350k
 - DOE share 100%
- Funding received in FY19: \$450k

Barriers

- Low energy and high cost
- Knowledge gap between materials research and cell-level need of the materials properties

Partners

- Enyuan Hu (Brookhaven National Laboratory)
- Chongmin Wang (Pacific Northwest National Laboratory)

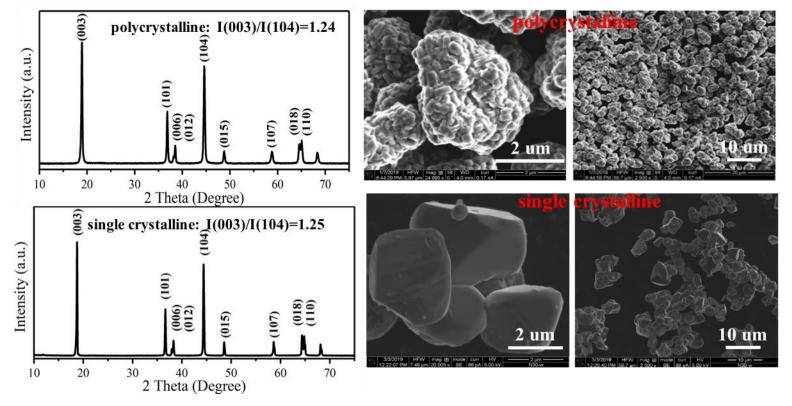
Relevance/Objectives

Overall Objectives

- Develop cost-effective synthesis approach for Ni-rich and Low-Co single crystal cathode materials that can maximize cell-level energy for advanced Li-ion battery technologies
- Investigate and tailor cathode/electrolyte interface for extended longterm cycling and reduced gas evolution
- Objectives this period
 - Synthesis of Ni-rich cathode materials with two different morphologies: single crystalline vs. aggregated polycrystalline
 - Evaluation of Ni-rich cathode at relevant scales
- Impacts
 - Accelerate the development of next-generation Li-ion batteries for future vehicle electrification

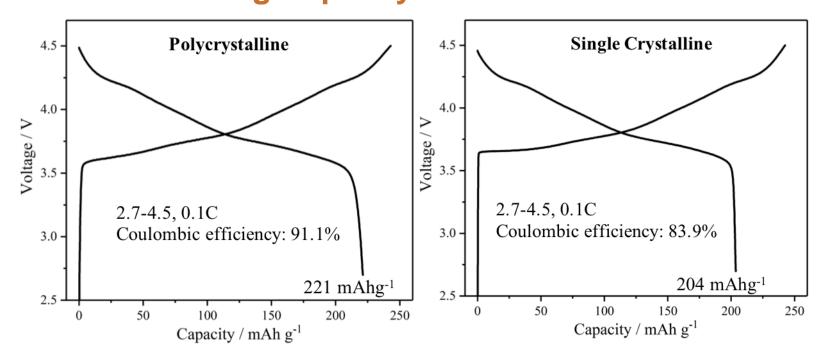
Milestones

Date	Milestones and Go/No-Go Decisions	Status
December 31. 2018	Q1:Identify the key synthesis parameters for Ni-rich and low-Co NMC cathodes.	Completed on Feb. 14, 2019 (delayed start in Dec.)
March 31, 2019	Q2:Implementation of as-prepared cathode materials into thick electrodes (up to 5 mAh/cm²).	Completed
June 30, 2019	Q3:Demonstrate >200 mAh/g specific capacity from Ni-rich and low-Co NMC cathodes.	On track
September 30, 2019	Q4:Complete protection of Ni-rich and low-Co NMC by surface coating and demonstrate more than 100 stable cycles in coin cells.	On track

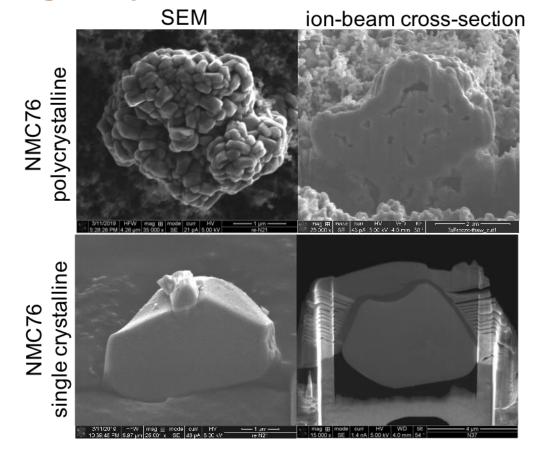


Approach

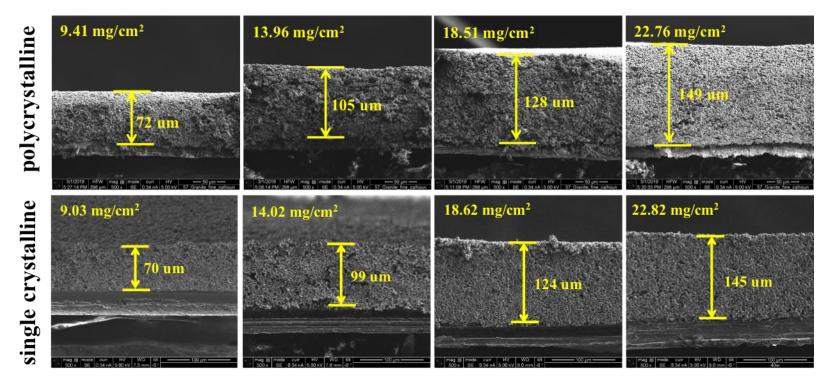
- Synthesis of Ni-rich and low-Co cathode with different morphologies: polycrystalline vs. single crystalline
- Implementation and evaluation of Ni-rich and low-Co cathode at thick electrode level adaptable by high-energy Li-ion batteries
- Minor Al doping to stabilize lattice structure and modify surface properties of Ni-rich and low-Co cathode to improve cycling stability


Technical Accomplishments Synthesis of Single Crystalline and Polycrystalline LiNi_{0.76}Mn_{0.14}Co_{0.1}O₂ (NMC76)

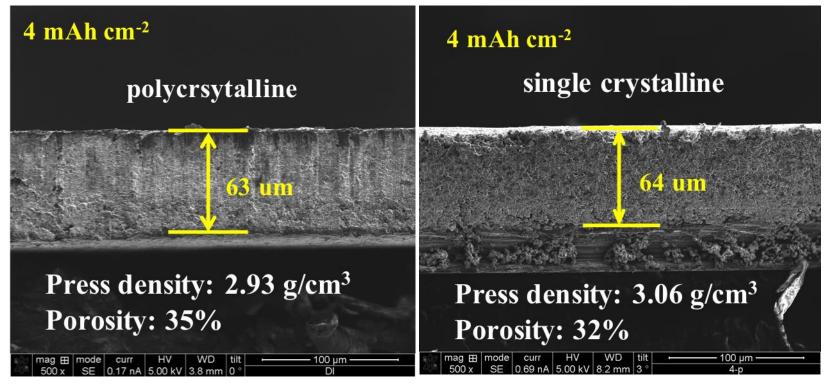
- While polycrystalline is the common form of LiNi₁/₃Mn₁/₃Co₁/₃O₂, single crystal is preferred for Ni-rich cathode because of reduced gas evolution, reduced sensitivity to moisture, lower surface area and increased tap density.
- Single crystal and polycrystalline NMC76 have been synthesized.
 - Pure phases of α -NaFeO₂-type layered structures
 - Similar size at 3-4 μm but polycrystalline NMC76 consists of nano-sized primary particles


Technical Accomplishments Single Crystalline NMC76 Delivers Greater than 200 mAh/g Capacity

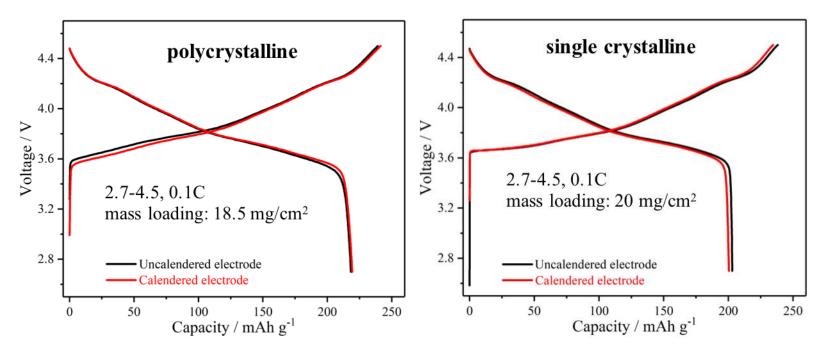
- Only 2% carbon and 2% binder are used for all electrode preparation.
- Single crystalline NMC76 delivers lower capacity than that of polycrystalline ones due to the increased primary particle size.
- Low Coulombic efficiency of single crystal NMC76 indicates the inadequate utilization of active materials.
- Synthesis optimization is needed for NMC76 single crystals.


Technical Accomplishments Single Crystalline has Reduced Grain Boundaries

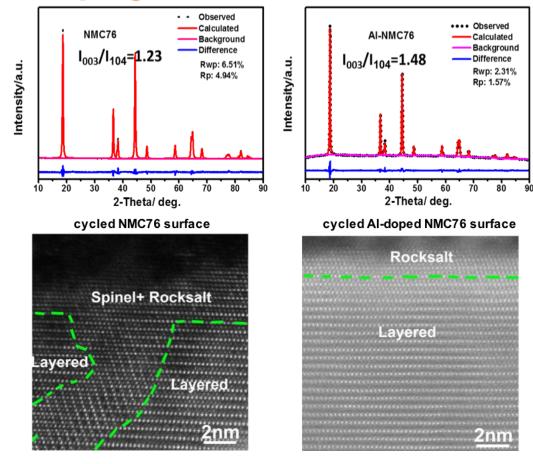
- ► Each NMC76 polycrystalline is a secondary particle
 - Consists of nano-sized primary particles agglomerated together
 - Internal porosity is observed.
- NMC76 single crystalline is fully dense: No grain boundaries or cracks.


Technical Accomplishments Single Crystalline NMC76 Allows Dense Particle Packing of Cathodes

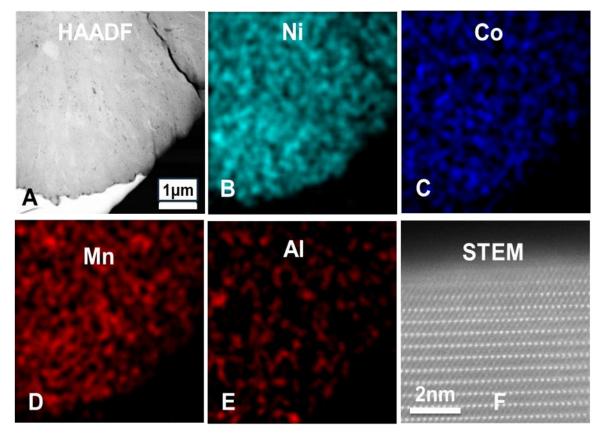
- ▶ Before calendering: the porosities of polycrystalline and single crystalline-based cathodes are ca.65% and ca.62%, respectively.
- At similar electrode thickness: More active materials can be packed into the cathode in the form of single crystalline.


Technical Accomplishments Calendered Single-Crystalline Cathode is More Compact

- ▶ 4 mAh/cm² cathode with 3 g/cm³ press density: Minimum requirements to construct a 250 Wh/kg Li-ion cell pouch cell (see backup slide).
- Calendered single crystal cathode displays higher press density and lower porosity than those of polycrystalline electrodes: Critical for improving cell-level energy by reducing electrolyte intake

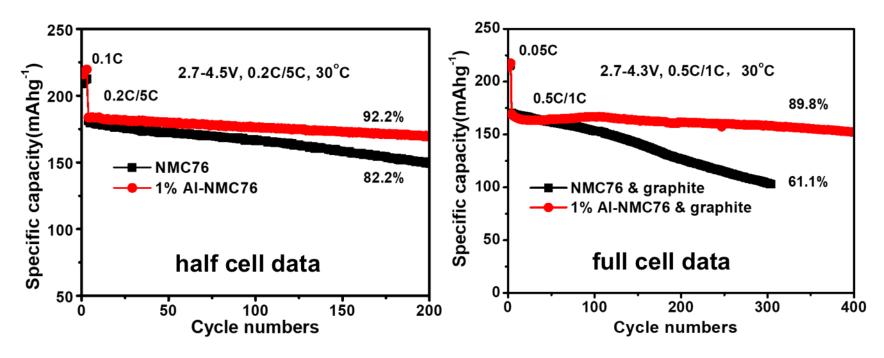

Technical Accomplishments Good Electrochemical Behavior Observed from Thick Cathodes

- Calendared polycrystalline thick cathodes deliver similar capacity with pristine cathode at ca. 219 mAh/g benefiting from its porous structures.
- Slight capacity decrease (from 204 to 201 mAh/g) is seen after calendering single crystal based cathode probably due to wetting issue.
- ► The specific capacity of single crystalline NMC76 will be improved through synthesis optimization.


Technical Accomplishments Al-doping Modifies Bulk and Surface Properties

- Al-doping is conducted only on polycrystalline since NMC76 single particle is under synthesis optimization.
- Al-doping of NMC76 (polycrystalline) decreases cation disordering and enhances layered structure integrity: (003)/(104) peak intensity ratio increases after doping.
- Al-doping also mitigates interfacial reactions: reduced amount of rock salt phase on NMC76 surface

Technical Accomplishments Al-doping is Homogenous within Polycrystalline NMC76



- Al element is homogeneously distributed within polycrystalline NMC76 particles.
- A small amount of Al (oxide) is anchored on the surface as a protective layer.
- Limited Li⁺/Ni²⁺ cation disorder is found in the layered structure viewed down from R-3m zone axis, consistent with the XRD analysis.

13

Technical Accomplishments Preliminary Results of Al-doping Suggests Improved Cycling Stability

- Improved cycling stability of Al-doped NMC76 polycrystalline are observed in both half and full cell testing.
- ► Enhanced lattice structure stability and reduced interfacial reactions of NMC76 both help on extending the stable cycling.
- Doped NMC76 single crystals will be evaluated after synthesis optimization.

Responses to Previous Year Reviewers' Comments

► This is a new project that was not reviewed last year.

Collaboration and Coordination with Other Institutions

Brookhaven National Laboratory: XRD characterization and structural analysis (This is a new project that started in 2019. More collaboration will be sought based on progress need.)

Remaining Challenges and Barriers

The rate capability of single crystal cathode is expected to be lower than polycrystalline, but there is always a balance between energy and power in realistic batteries.

Probing the global interfacial information of the entire cathode.

Proposed Future Work

- ► Further improve the reversible capacity of NMC76 single crystal to be close to its crystalline counterpart.
- ► Further validation of doping/coating effects in thick electrodes.
- Investigate the failure mechanism of Ni-rich and low-Co cathodes at relevant conditions, e.g., mass loading, full cell, electrolyte content.
- Comparison of single crystal and polycrystalline NMC76 in terms of their gas generation and storage properties.

Any proposed future work is subject to change based on funding levels.

Summary

- Electrochemically active single crystalline and polycrystalline NMC76 have been successfully synthesized.
- Single crystal NMC76 delivers greater than 200 mAh/g capacity promising for building high-energy Li-ion batteries
- Thick electrodes based on single crystal NMC76 has reduced porosity and increased electrode press density without sacrificing much reversible capacity.
- Preliminary results of minor Al-doping indicate the enhanced layered structure of NMC76 while mitigating its interfacial reactions during cycling.

Acknowledgements

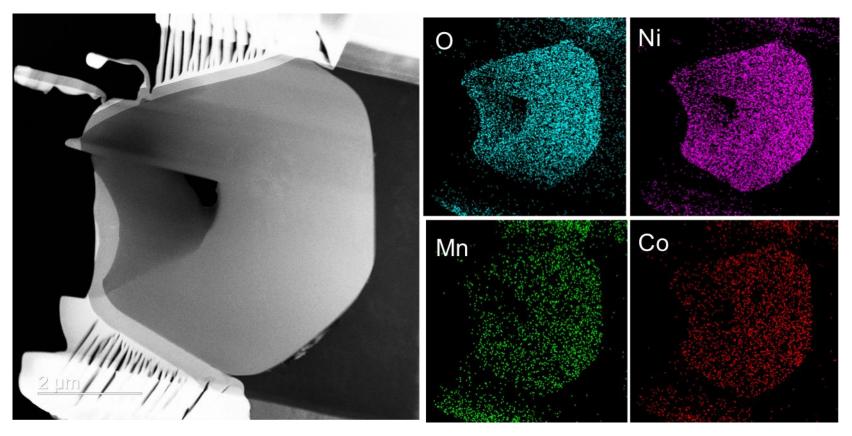
- ▶ DOE/EERE/VTO: Advanced Battery Research
- ► Team members:

Yujing Bi, Jiangtao Hu, Bingbin Wu, Linze Li, Wengao Zhao

Technical Backup Slides

PNNL is operated by Battelle for the U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information.



250 Wh/kg Cell Design Based on Graphite-NMC76 Chemistry

Cathode	Material	LiNi _{0.76} Mn _{0.14} Co _{0.1} O ₂
	1 st discharge capacity / mAh g ⁻¹	200
	Active material Loading	96%
	Coating weight (each side) / mg cm ⁻²	21
	Areal capacity (each side) / mAh cm ⁻²	4.0
	Electrode press density/ g cm ⁻³	3.0
	Electrode thickness (each side) / µm	70
	Number of double side Layers	13
	Electrode dimension W*L / mm	36*54
Al foil	Thickness / µm	12
	Material	Gr.
	Specific capacity / mAh g ⁻¹	360
Anada	Active material Loading	96%
Anode	N/P ratio (cell balance)	1.16
	Coating weight (each side) / mg cm ⁻²	13.5
	Electrode dimension W*L / mm	37.5*55.5
Cu foil	Thickness / µm	8
Electrolyte	E/C ratio / g Ah ⁻¹	2.5
Separator	Thickness / µm	20
Packet Foil	Thickness / µm	88
	Average voltage (1 st cycle) / V	3.65
Cell	Capacity (1 st cycle) / Ah	2.0
	Cell Energy / Wh kg ⁻¹	250

TEM Confirms the Absence of Grain Boundaries in NMC76 Single Crystals

- STEM image shows single-crystalline structure without grain boundaries.
- EDS results show uniform composition distribution throughout the particle.

Reviewer Only Slides

PNNL is operated by Battelle for the U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Publications and Presentations

This is a new project started in FY2018.

Critical Assumptions and Issues

- Single crystalline generally delivers lower capacity compared to polycrystalline. After further synthesis modification, it is expected that single crystal Ni-rich cathode will deliver capacity close to its polycrystalline counterpart.
- Single crystalline will mitigate the issues of gassing and particle "cracking" along grain boundaries during cycling. The safety and long-term storage and cycling stability of Ni-rich cathode materials will be improved by using single crystalline Ni-rich cathode.