

Ultra-Lightweight, Ductile Carbon Fiber Reinforced Composites

Vlastimil Kunc

Oak Ridge National Lab

6/11/2019

Xiaoyu Rayne Zheng

Zhenpeng Xu, Chan Soo Ha, Ruthvik Kadam, (Virginia Tech)

John Lindahl and Seokpum Kim (ORNL)

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Project ID#: mat146

Overview

Barriers and Targets

Timeline

- Project start date: Oct 2019
- Project end date: Sept 2021
- Percent complete: 40%

Budget

- DOE project funding: \$500K
 - DOE: 50%
 - Contractor: 50%
- ➢ Funding for FY19: \$460K

Barrier: Use of lower-density materials with suitable mechanical properties, i.e.,

- materials with higher strength-to-weight and/or higher stiffness-to-weight ratios.¹⁾
- Target: Hybrid hierarchical CF reinforced materials that are ultralight, strong and tough for 3D printing.

Partners

- Oak Ridge National Laboratory (ORNL)
 Prime contract
 - ORNL project lead: Vlastimil Kunc
- Virginia Polytechnic and State University (VT)
 Subcontract

VT project lead: Xiaoyu (Rayne) Zheng

¹⁾ source: 1. U.S. DRIVE MTT Roadmap Report, section 4

2 **CAK RIDGE** National Laboratory VIRGINIA T

Relevance

Overall Objectives

Create hybrid hierarchical materials that are **ultralight**, **strong** and **tough** for 3D printing.

Current Limitations

- Lightweight materials: Unsatisfactory strength, toughness and weight density
- ➤ Direct deposition: Uncontrollable voids and micro-porosity → Reduced strength and toughness.

VTO's Mission

Reduce the transportation energy cost while meeting or exceeding vehicle performance expectations.

Our Strategies

- Material Combinations
 - Brittle carbon fiber and multi-material polymers
- Smart Structure
 - Optimal structure for high stiffness and high damping

Milestones

Milestone / End Dated	Description	Status
Milestone 1 12/30/2018	Mechanical properties (compression, shear, tensile) verified through theoretical and numerical calculations and experimental testing of microlattice materials	Completed
Milestone 2 9/30/2019	Printing hierarchical two-phase carbon fiber reinforced mesoscale lattice materials, comprised of microscale carbon fiber fillers and large scale structural components.	On track
Milestone 3 12/30/2019	Size effects of carbon fiber composited printed with varying lengthscales from micrometers to centimeters	On track
Milestone 4 07/30/2020	Demonstrated ultralight (<200 kg/ m ³) hierarchical carbon fiber composites with tailored energy absorption and high strain recovery (>10%)	On track
Stretch Milestone 12/30/2020	Printing hierarchical carbon fiber lattice materials (<500 kg/m ³) with tunable directional or isotropic functionally graded designed stiffness and energy absorbing capabilities	On track
Stretch Milestone 9/30/2021	Additive manufacturing of lightweight carbon fiber composite microlattice materials (<100 kg/m ³ , with <100 micron feature size cotrol) with superior recoverability (>20% strain as compared to 0.5% strain)	On track

CAK RIDGE National Laboratory

Technical Accomplishments

I. Part 1 – Additive Manufacturing of light, high stiffness carbon fiber (CF) composite

Carbon Fiber Reinforced Polymer

Our PµSL 3D printing system can fabricate samples with carbon fiber reinforced polymer (CFRP) with the resolution of 200 microns.

New CF Printing System

System design

We are working on the building of the new CF printing system which has a larger printing area (adjustable).

Carbon Fiber Reinforced Polymer

Our CFRP samples are stiffer than other similar CFRP samples reported in literature.

Lattice Structure

Complex 3D structures printed by our multi-material 3D printer

Achieved CF composites with complex 3D micro-architectures with multi-materials.

Lightweight, High-Stiffness CF Microlattice

Achieved CF lattice with density as low as ~60 kg/m³, and with near constant specific stiffness at ultralow density.

Technical Accomplishments

II. Part 2 – Multi-phase of light, high stiffness and high damping carbon fiber (CF) composite structures

 $E^{1/3}/\rho$ vs. tan δ chart for CFRP and other family of materials

With the use of our multi-material fabrication method, we aim to design a CF architecture with high stiffness and high damping simultaneously.

Intrinsic and Structural Damping

Damping type	Cause	Dominant at
Intrinsic	Viscoelastic property of constituents	Small strains
Structural	Deformation mechanism	Large strains

Mechanism of intrinsic (small strain) and structural (large strain) damping are incorporated to achieve high damping capacity of CF composite microlattice.

Intrinsic Damping of CF Composite

We have achieved a solid CF reinforced composite (having 5% soft phase) having both high stiffness and high damping, which reaches the upper bound of stiffness-damping pair.

Lightweight, High-Stiffness CF Microlattice

Solid HDDA, bend-dominated foam

We selected octet-truss unit cell as a base architecture since it is lightweight and can provide a greater stiffness per unit weight than bending-dominated cells.

Octet-truss geometry

- Lightweight
- Favorable *E*-ρ relationship
- Stretch-dominated $(E \sim \rho^1)$
- Greater stiffness per unit weight than bendingdominated

Intrinsic Material Damping for Lattice Structure

Intrinsic damping

 $tan\delta$ (at 10 Hz at rt) = 0.038 via DMA test

Structural damping

5 mm

At much lower density, a stiff CF reinforced lattice may display high stiffness but with damping coefficient comparable to bulk material.

Microlattice Design with High Stiffness-Damping Pair

Theoretical model

- Intrinsic damping: $\tan \delta \sim f(\bar{\rho}, E_{strut})$

$$E_{octet}^{*} = \left[\frac{2\sqrt{2}}{3}\pi\left(\frac{r}{l}\right)^{2} + 4\sqrt{2}\pi\left(\frac{r}{l}\right)^{4}\right]E_{comp}^{*}$$
$$E_{comp}^{*} = \left[\frac{V_{1}}{E_{1}^{*}} + \frac{V_{2}}{E_{2}^{*}}\right]^{-1}$$
$$tan\delta = \frac{E_{octet}^{\prime\prime}}{E_{octet}^{\prime}}$$

- Structural damping (in progress)

We designed CF octet-truss unit cell with soft material to achieve high stiffness-damping pair. CF octet-truss unit cells having 3% and 5% flexiable volume fraction have been fabricated.

Intrinsic Damping (Theory)

Our theoretical derivation for intrinsic damping predicts that an optimized architecture for high Etan δ requires a specific volume ratio of soft material.

Structural Damping (Experiment)

From our preliminary experiments for structural damping, it seems that there is the maximum $E^{1/3}tan\delta$ for a specific volume fraction of soft material.

Evaluation of Our Design

 $E^{1/3}/\rho$ vs tan δ chart for CFRP and other family of materials

Again, with the use of our multi-material fabrication method, we believe that our design can achieve high stiffness-damping pair and outperform existing designs.

Response to Previous Reviewer's Comments

This project was not previously reviewed.

Collaboration

- Subcontractor: Virginia Tech
 - Xiaoyu Rayne Zheng, Zhenpeng Xu, Chan Soo Ha, Ruthvik Kadam,

Remaining Challenges

Fabrication of high loading carbon fiber composites

- Increase UV light penetration depth and prevention of interlayer delamination.
- Managing viscosity and processability: viscosity of the resin increases as carbon fiber loading increases.
- > Tradeoff between resolution and building area.
 - Scaling up printing method in progress
- > Theoretical model for structural damping optimization.
- Scale up of technology for vehicle demonstration

Proposed Future Research

Ongoing:

- \succ Theory of structural damping.
- \triangleright Conduct cyclic testing to obtain stiffness-damping map.
- \blacktriangleright Manuscript in preparation.
- \triangleright Enlargement of the printing area to tens of centimeters.

Planned:

- Demonstrate ultralight hierarchical carbon fiber composites with tailored energy absorption and high strain recovery (> 10%).
- ➤ Fabricate hierarchical carbon fiber lattice materials (< 500kg/m3) with tunable directional or isotropic functionally graded designed stiffness and energy absorbing capabilities.

Any proposed future work is subject to change based on funding levels.

Summary

- Target: Hybrid hierarchical CF reinforced materials that are ultralight, strong and tough for 3D printing.
- Developed: Multi-material lattice structures with high stiffness and high damping / energy absorption.
- Future: Fabricate hierarchical carbon fiber lattice materials (<500kg/m3) with tunable directional or isotropic functionally graded designed stiffness and energy absorbing capabilities

Reference

[1] G. D. Goh et al., Recent Progress in Additive manufacturing of polymer reinforced composites, Advanced materials, 4 (1), 1800271 (2019).

[2] F. Ning et al., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Composite part B: engineering, 80, 369-378 (2015).

[3] L. Salari-Sharif et al. Energy dissipation mechanisms in hollow metallic microlattices, J. of Materials Research, 29 (16), 1755-1770 (2014).

[4] X. Zheng et al., Ultralight, Ultrastiff Mechanical Metamaterials, Science, 344 (6190), 1373-1377 (2014).

