

Two-Phase Cooling Technology for Power Electronics

P.I. Gilbert Moreno National Renewable Energy Laboratory May 15, 2012

Project ID #: APE037

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

Project Start Date: FY11 Project End Date: FY13 Percent Complete: 50%

Budget

Total Project Funding: \$975k DOE Share: \$975k

Funding Received in FY11: \$550k

Funding for FY12: \$425k

Barriers and Targets

• Weight, Cost, and Efficiency

Partners

- Delphi
- 3M
- DuPont
- University of Colorado-Boulder
- Iowa State University
- University of Illinois-Chicago
- Project lead: NREL

Relevance/Objectives

Project Objective

- Demonstrate a compact, passive two-phase cooling system capable of meeting automotive power electronics heat dissipation requirements.
 - Cooling system will be designed to cool advanced power modules (Delphi's discrete power switches)
 - Demonstrate improved thermal performance
 - Qualitatively demonstrate cost reductions

Relevance

- Potential application to increasing heat dissipation requirements in automotive power electronics
- Efficient heat transfer technologies can:

Reduce cost and increase power density, specific power, and efficiency

Milestones

Date	Milestone or Go/No-Go Decision
October 2011	Characterized the pool boiling performance of a new refrigerant, HFO-1234yf
February 2012	 Designed, fabricated, and tested a passive two-phase cooling system (condenser and evaporator) Working to optimize evaporator performance
March 2012	Designed and fabricated an experimental apparatus to test the reliability of boiling enhancement coatings
June 2012	Initiate the design of a passive two-phase system to cool Delphi's discrete power switches
September 2012	Go/No-Go: Can we demonstrate ~1 kW (one inverter leg) of heat dissipation and improved performance with a passive two-phase cooling system?

Approach/Strategy

Utilize the high heat-transfer rates and isothermal characteristics of two-phase heat transfer to:

- 1. Decrease the size, weight, and cost of the cooling system
- 2. Increase efficiency through a passive (no pumping requirement) two-phase approach
- 3. Allow for a reduction in the insulated gate bipolar transistor (IGBT) device count and/or size (cost and size reduction)

Uniqueness and Impacts

- New refrigerants:
 - HF0-1234yf is a new, environmentally friendly refrigerant likely to replace R-134a in automotive air conditioning systems
 - R-245fa is a somewhat new refrigerant with better thermal properties and lower operation pressures (compared to HFO-1234yf)
- New boiling enhancement techniques
- Provide a cooling solution for high heat-flux applications

Approach/Strategy

Project approach, timeline, and accomplishments

Working towards the end goal of demonstrating a passive twophase power electronics cooling solution

FY11		FY12		FY13	
Demonstrated 500% boiling heat transfer increase with enhanced surfaces (completed)		Fundamental Stu	dy		
Characterized pool boili HFO-1234yf (co		f			
Mechanistic study on boiling enhanced surfaces (on-going)					
Demonstrated 60% power module, thermal resistance reduction using passive two- phase <i>(completed)</i>	 	System-level Stu	dy		
		sive two-phase cooling systems (e . Optimize evaporator performance			
				Design a passive, two-phase system(s) to anced power modules (<i>future work</i>)	
		Reliability Study	/		
				Project Goal: Conduct reliability tests on the passive two-phase cooling system (<i>future work</i>)	
		Test the reliability of bo	iling enhanceme	nt coatings (on-going)	

- NREL first to characterized the pool boiling performance of a new refrigerant, HFO-1234yf
 - Saturation temperatures tested: 25° C ($P_{sat} = 0.7$ MPa) to 60° C ($P_{sat} = 1.7$ MPa)
- Quantified the thermal enhancements provided by a boiling enhancement coating
- Compared HFO-1234yf performance to R-134a performance

Relevance:

- Potential use of HFO-1234yf for two-phase cooling of power electronics
- Potential for consolidating automotive cooling systems (*potential cost and weight reductions*)

Credit: Gilbert Moreno, NREL

- HFO-1234yf and R-134a had similar performance at lower heat fluxes
- At higher heat fluxes HFO-1234yf produces lower heat transfer coefficients
- HFO-1234yf's lower performance is due in part to its lower latent heat and thermal conductivity
- Both refrigerants provide higher heat-transfer rates as compared with FC-72 (a coolant used in immersion cooling applications)

Rainey, K. N., 2001, "Pool and Flow Boiling Heat Transfer from Microporous Flat and Finned Surfaces in FC-72," Ph.D. Dissertation, The University of Texas at Arlington

- Microporous coating enhanced HFO-1234yf heat transfer coefficients by as much as 350% and produced heat transfer coefficients as high as 120,000 W/m²-K
- Coating heat transfer enhancements decrease with increasing saturation temperature and heat flux
- The high heat-transfer rates of HFO-1234yf with microporous coatings makes it a viable refrigerant for two-phase cooling of power electronics

Credit: Bobby To, NREL

- Critical heat flux (CHF) is the maximum heat flux that can be dissipated through boiling heat transfer
- It is important to know the CHF for a refrigerant
- Exceeding CHF results in sudden and drastic temperatures increases (i.e., damage to electronics)
- Operating near CHF should be avoided

Credit: Gilbert Moreno and Charlie King, NREL

- Microporous coating increases CHF by as much as **120%**
- Coating CHF enhancements increase with increasing saturation pressure

-Rainey, K. N., 2001, "Pool and Flow Boiling Heat Transfer from Microporous Flat and Finned Surfaces in FC-72," Ph.D. Dissertation, The University of Texas at Arlington

Passive two-phase cooling system prototype development

Objective: Design a passive two-phase cooling system for power electronics cooling. Demonstrate improved thermal performance within a compact and reliable system.

Designed and fabricated a compact twophase cooling system

- The system consists of an evaporator and a condenser and operates on only 50 mL of coolant
- Passive (no pump or compressor) → high system efficiency and reliability
- Indirect cooling approach decreases potential for coolant leakage

Passive two-phase cooling system prototype development

Phase 1: Optimize evaporator performance using the current two-phase system (*current work*)

- Obtained initial experimental results using an evaporator module incorporating finned geometries, have not implemented boiling enhancement coatings
- Work continues to improve performance using boiling enhancement coatings and refrigerants with better thermal properties (e.g., HFO-1234yf, R-245fa)
- System allows for visualization of the fluid flow, which aids in understanding and optimizing performance

Passive two-phase cooling system prototype development

Phase 2: Demonstrate a compact, passive two-phase cooling solution on an advanced power module (*future work*)

 The two-phase system will be designed to cool multiple Delphi discrete power switches. The system will consist of an evaporator cold plate and an air-cooled condenser.

Courtesy of Gary Eesley, Delphi

- Demonstrate the system can dissipate automotive power electronic heat loads
- Characterize the junction-to-air thermal resistance of the system. We will compare this performance to that of conventional water— ethylene glycol cooling systems.
- Conduct experiments to characterize the system performance at elevated temperatures and under transient heat loads (impose a typical drive cycle heating profile)

Reliability of boiling enhancement coatings

- Designed and fabricated a reliability test system (pressure vessel and control/monitoring system)
- System will subject coated samples to power/temperature (~50% CHF) cycling operation for months or years to stress the coatings
- System will characterize the thermal performance over time and evaluate for potential coating delamination

Collaboration and Coordination

UNIVERSITY PARTNERS

- University of Colorado-Boulder
- Iowa State University
- University of Illinois-Chicago

INDUSTRY PARTNERS

- Delphi
- 3M Electronics Markets Materials Division
- DuPont

Proposed Future Work

<u>FY12</u>

- Optimize the two-phase system evaporator to improve thermal performance
- Design a passive two-phase system capable of cooling ~1 kW (one inverter leg). This system will be scaled up in FY13 to dissipate higher heat loads typical of automotive power electronic systems (see first item in FY13 plan below).
- Initiate boiling enhancement coating reliability experiments

<u>FY13</u>

- Design a compact, passive two-phase system to cool advanced power modules (Delphi's discrete power switches). Demonstrate the system can dissipate automotive power electronic heat loads (2-3 kW) while providing superior thermal performance.
- Operate two-phase cooling systems under extreme temperature conditions
- Understand the performance of the two-phase cooling system under transient heat loads
- Initiate cooling system reliability study
- We will seek to collaborate with an industry partner (e.g., Delphi) to develop an inverter designed specifically for two-phase cooling

Objectives / Relevance

- Demonstrate a compact, passive two-phase cooling system capable of meeting automotive power electronics heat dissipation requirements. The cooling system will be designed to cool advanced power electronics modules.
- Efficient heat transfer technologies (two-phase) can reduce **cost** and increase **power density, specific power**, and **efficiency**

Approach / Strategy

- Conduct fundamental research to characterize the performance of new candidate refrigerants and boiling enhancement techniques
- Conduct system-level research to develop compact, passive two-phase cooling systems for power electronics cooling
- Conduct research to analyze the reliability aspects of two-phase systems

Summary

Technical Accomplishments

- NREL was first to fully characterize and publish the pool boiling characteristics of a new automotive air conditioning refrigerant, HFO-1234yf
 - A boiling enhancement coating was found to increase HFO-1234yf heat transfer coefficients by 350% and achieve values of 120,000 W/m²-K.
 - The high heat transfer rates of HFO-1234yf make it a viable refrigerant for two-phase cooling of power electronics.
- Fabricated and tested a passive two-phase cooling system. Work currently underway to optimize evaporator performance
- Completed design and fabrication of a system intended to test the reliability of boiling enhancement coatings

Collaborations

• University of Colorado-Boulder, Iowa State University, University of Illinois-Chicago, Delphi, 3M Electronics Markets Materials Division, and DuPont

Acknowledgements:

Susan Rogers and Steven Boyd, U.S. Department of Energy

For more information contact:

Principal Investigator Gilbert Moreno Gilbert.Moreno@nrel.gov Phone: (303)-275-4450

Team Members:

Sreekant Narumanchi Charlie King Suraj Thiagarajan

APEEM Task Leader

Sreekant Narumanchi Sreekant.Narumanchi@nrel.gov Phone: (303)-275-4062