

Two-Phase Cooling of Power Electronics

Gilbert Moreno National Renewable Energy Laboratory May 14, 2013

Project #: APE037

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project Start Date: FY11

Project End Date: FY13

Percent Complete: 70%

Budget

Total Project Funding: \$1,500K

DOE Share: \$1,500K

Funding Received in FY12: \$550K

Funding for FY13: \$400K

Barriers

Weight, cost, and efficiency

Partners

- Delphi
- 3M
- DuPont
- University of Colorado-Boulder
- Project lead: National Renewable Energy Laboratory

Relevance

Project Objective

- Significantly improve thermal management of automotive power electronics by utilizing the high heat transfer rates of two-phase cooling
 - Design a passive, two-phase cooling system for automotive power modules (cool six Delphi discrete power switches)
 - Demonstrate improved thermal performance over existing state-of-the-art automotive cooling systems
 - Demonstrate system can dissipate automotive power electronics heat loads
 - Quantify key program metrics (power density and specific power)

Relevance

- Improved thermal management is an enabler to achieving the DOE APEEM targets
 - Reduce cost and increase power density, specific power, and efficiency

Milestones

Month / Year	Milestone or Go/No-Go Decision	
July 2012	Milestone: Characterized the pool boiling performance of R-245fa. Submitted a conference paper (2013 ASME Heat Transfer Conference) that reported the results	
September 2012	Milestone: Designed and fabricated a prototype/proof-of-concept passive two-phase cooling system	
February 2013	Go/No-Go Decision: Demonstrated that the passive two-phase cooling system car dissipate at least 2.5 kW of heat using 250 ml of refrigerant	
February 2013	Milestone: Identified techniques to improve cooling system performance; submitted a record of invention (ROI)	
March 2013	Milestone: Initiated experiments to evaluate the long-term reliability of boiling enhancement coatings	

Approach/Strategy

Characterize performance of new, candidate refrigerants

Two-phase heat transfer enhancement

Develop passive, two-phase cooling system for automotive power electronics

- Heat transfer coefficients
- Critical heat flux
- Temperature effect on performance
- Complete

- Microporous coatings
- Nano-structured surfaces
- Complete

 Demonstrate improved thermal performance via passive, two-phase cooling

Credit: Gilbert Moreno, NREL

Credit: Bobby To, NREL

Approach/Strategy

Impacts

The high heat-transfer rates and isothermal characteristics of two-phase cooling can:

- Allow for a reduction in the insulated gate bipolar transistor (IGBT) device count and/or size (cost and size reduction) through an increase in power density
- Increase efficiency through a passive (no pumping requirement) two-phase cooling approach

Uniqueness

- New refrigerants: HFO-1234yf is a new, environmentally friendly refrigerant that may replace R-134a in automotive air conditioning systems
- New boiling enhancement techniques

Characterized the pool boiling performance of refrigerant R-245fa

- Measured heat transfer coefficients and critical heat flux at various temperatures
- Compared its performance with other viable refrigerants

Heat transfer coefficients at ~20 W/cm²

Characterized the pool boiling performance of refrigerant R-245fa

- Enhanced R-245fa heat transfer coefficients by as much as 500% and critical heat flux by 50% using the 3M microporous coating
- Higher heat transfer allows for greater power density
- Less variation in performance using the microporous coating

Heat transfer coefficients at ~20 W/cm²

Reliability of boiling enhancement coatings

- Initiated experiments to evaluate the long-term reliability of boiling enhancement coatings
- System will thermally stress coated samples by subjecting them to power/temperature (~50% CHF) cycling for a year
- System will characterize the thermal performance over time and evaluate for changes in performance

Test samples within the reliability vessel

Characterize performance of new, candidate refrigerants

Two-phase heat transfer enhancement

Develop passive, two-phase cooling system for automotive power electronics

Phase I

Small-scale passive two-phase cooling system experiments

- Focus on improving evaporator performance: finned structures and boiling enhancement coatings
- Define refrigerant quantity requirements

Phase II

Inverter-scale two-phase cooling system experiments

- Cooling system design: evaporator and air-cooled condenser
- Designed to cool automotive power modules (six Delphi discrete power switches)
- Demonstrate systems can dissipate power electronic heat loads
- Quantify performance metrics and compare to state-of-the-art cooling systems

Phase I

Fabricated a compact two-phase cooling system

- Indirect cooling (ease of implementation)
- Passive (increase efficiency)

Experiments conducted to:

- Improve evaporator performance: finned structures and boiling enhancement coatings
- Define refrigerant quantity requirements: how much fluid is required to dissipate automotive power electronic heat loads
- Implications for using two-phase heat transfer for power electronics cooling

Phase I (cont'd)

- Reduced evaporator thermal resistance by about 60% using boiling enhancement coatings
- Estimate it would require ≤ 250 ml of refrigerant (HFO-1234yf or R-245fa) to dissipate 3.5 kW of heat with a passive two-phase configuration

Evaporator resistance: heater to liquid			
	Smooth	Boiling enhancement coating	
R"th (mm²-K/W)	51.9	21.4	

Phase II

Designed and fabricated a proof-of-concept passive, two-phase cooling system

- System will be charged and tested with refrigerants HFO-1234yf or R-245fa. Operation with other refrigerants is possible.
- Extensive thermal and structural finite element analysis was conducted
- Designed to cool automotive power modules (six Delphi discrete power switches)
- Fan-cooled condenser
- Indirect cooling scheme: electronics are not in contact with refrigerants
- Passive system: no pump or compressor

Passive two-phase cooling system results

Phase II (cont'd)

Initial test conditions:

- Total system charge: 250 ml of R-245fa
- Non-coated evaporator (i.e., no boiling enhancement coating)
- Conducted experiments using six electric heaters to simulate six power modules. Heaters mounted to evaporator/twophase cold plate using thermal interface material

Front view Side view T condenser -Pressure T inlet air 22 cm evaporator Power modules T heater average or resistance heaters 27 cm 7 cm

Cooling system schematic

Resistance heater

Credit: Gilbert Moreno, NREL

Passive two-phase cooling system results

Phase II (cont'd)

Preliminary results:

- Cooling system can dissipate at least 2.5 kW of heat
- Decreasing thermal resistance trend indicates system can dissipate more heat
- System thermal performance will be increased and its size will be reduced through the use of:
 - Enhanced-surfaces: prior results indicate that evaporator thermal resistance can be reduced by 60%
 - Bonded interfaces between heater and evaporator
 - Folded-fin design condenser

Next Steps

- Test to higher power levels
- Implement boiling enhancement coatings within evaporator
- Experiments using refrigerant HFO-1234yf
- Understand effect of inclination on performance
- Cool Delphi power module: measure junction-to-air resistance

Techniques to further improving evaporator performance and reduce manufacturing cost have been identified. ROI has been submitted

Collaboration and Coordination with Other Institutions

University Partners

- University of Colorado-Boulder (graduate student)
- Iowa State University (provided enhanced surfaces)
- University of Illinois-Chicago (provided enhanced surfaces)

Industry Partners

- Delphi (supplied power modules)
- 3M Electronics Markets Materials Division (supplied boiling enhancement coating)
- DuPont (supplied HFO-1234yf refrigerant)

Proposed Future Work

FY13

Characterize thermal performance of the proof-of-concept two-phase power electronics cooling system

- Measure thermal resistance (junction-to-air) while cooling Delphi's discrete power switch
- Measure maximum heat dissipated
- Understand effects of inclination on thermal performance
- Characterize performance under transient heat loads (drive cycle power profile)
- Compare against performance of conventional water-glycol cooling systems

Proposed Future Work

FY13 (cont'd)

- Improve two-phase cooling system design to improve performance and decrease size and manufacturing cost
 - Improve evaporator design
 - Work with industry partner to fabricate a custom-made condenser
- Evaluate the long-term reliability of boiling enhancement coatings
- Develop industry partnership to demonstrate a two-phase cooled inverter system

Summary

DOE Mission Support

• Enable meeting the DOE APEEM cost, power density, and specific power targets to be achieved via improved thermal management

Approach

- Utilize the high heat transfer rates of two-phase cooling to improve performance
- Demonstrate a passive, two-phase cooling solution for automotive power electronics

Accomplishments

- Characterized the pool boiling performance of R-245fa on plain and microporousenhanced surfaces
- Demonstrated that a passive, two-phase cooling system can dissipate at least 2.5 kW of heat with 250 ml of refrigerant
- Identified means to enhance passive, two-phase cooling system performance and submitted an ROI
- Initiated experiments to evaluate the long-term reliability of boiling enhancement coatings

Summary

Future work

- Characterize the thermal performance of the proof-of-concept passive, two-phase cooling system
- Further reduce the size and increase the thermal performance of the two-phase cooling system
- Quantify performance metrics (i.e., power density, specific power, and efficiency) for the cooling system. Compare values to those of existing state-of-the-art cooling systems
- Seek collaboration with industry partner to further demonstrate this technology

Collaborations

- Delphi
- 3M
- DuPont
- University of Colorado-Boulder
- Iowa State University
- University of Illinois-Chicago

Acknowledgment:

Susan Rogers and Steven Boyd, U.S. Department of Energy

Team Members:

Jana Jeffers Charlie King

For more information contact:

Principal Investigator
Gilbert Moreno

Gilbert.Moreno@nrel.gov

Phone: (303)-275-4450

APEEM Task Leader

Sreekant Narumanchi

Sreekant.Narumanchi@nrel.gov

Phone: (303)-275-4062