

Thermal Performance and Reliability of Bonded Interfaces

PI: Douglas DeVoto National Renewable Energy Laboratory May 15, 2012

Project ID: APE028

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project Start Date: FY10

Project End Date: FY12

Percent Complete: 80%

Budget

Total Project Funding:

DOE Share: \$1.4M

Funding Received in FY11: \$600K

Funding for FY12: \$425K

Barriers and Targets

- Cost
- Weight
- Performance and Lifetime

Partners

- Interactions / Collaborations
 - General Motors, Btech, Semikron, Heraeus, Kyocera, Virginia Tech, Oak Ridge National Laboratory (ORNL)
- Project lead: NREL

Relevance/Objectives

- Excessive temperature (>150°C for silicon
 [Si] devices) can degrade the performance,
 life, and reliability of power electronics
 components
- Interfaces in the package can pose a major bottleneck to heat removal
- Conventional thermal interface materials (TIMs) do not meet thermal performance and reliability targets—the industry trend is towards bonded interface materials (BIMs)
- Bonded interfaces, such as solder, degrade at higher temperatures and are prone to thermomechanical failure under large temperature cycling

Credit: Douglas DeVoto, NREL

Relevance/Objectives

Overall Objective

- Investigate the reliability of emerging BIMs (such as silver sinters, lead-free solders, and thermoplastics with embedded carbon fibers) for power electronics applications to meet the thermal performance target of 5 mm²K/W
- Identify failure modes in emerging BIMs, experimentally characterize their life under known conditions, and develop lifetime estimation models

Address Targets

- High-performance, reliable, low-cost bonded interfaces enable:
 - Compact, light-weight, low-cost packaging
 - High-temperature coolant and/or air cooling

Uniqueness and Impacts

 Thermal performance and reliability of emerging sintered materials and thermoplastics in large-area attach will be characterized.

Milestones

Date	Milestone or Go/No-Go Decision	
June 2011	Evaluated bond quality of initial samples using nondestructive acoustic imagery (C-SAM). Aluminum nitride (AlN) delamination failures on many samples initiated change to silicon nitride (Si_3N_4) substrates.	
October 2011	Completed initial finite element analysis (FEA) modeling to determine plastic work/strain energy density in lead-based solder BIM while under cycling.	
December 2011	Received new Si_3N_4 substrates and tested for delamination under accelerated temperature cycling profile. New substrates meet reliability requirements for BIM testing.	
January 2012	Synthesized second set of samples using revised substrates. Btech HM-2 bonded at NREL and sintered silver bonded at Semikron.	
May 2012	Complete double lap shear testing of lead-based solder samples and use stress/strain data to revise viscoplastic properties needed for FEA.	
September 2012	Complete experimental temperature cycling of samples to 2,000 cycles or until failure. Develop strain energy density versus cycles-to-failure models for lead-based and lead-free solders.	

Approach/Strategy

BIM Finite Element Modeling

- Temperature cycling parameters:
 - Maximum temperature = 150°C
 - Minimum temperature = -40°C
 - Ramp rate = 10°C/minute
 - Dwell time = 10 minutes
- Viscoplastic material model applied to solder layer
- Temperature-dependent elastic material properties incorporated for baseplate and substrate

BIM Finite Element Modeling

Solder Layer Bottom Surface (Quarter Symmetry Model)

- Accumulated plastic work per volume distribution in the bonded joint region (63Sn-37Pb solder)
- Plastic work higher in the corner regions—location where failures are likely to originate
- Plastic work/strain energy density versus cycles-tofailure correlation to be obtained for lead-based and lead-free solders

Solder Layer Corner View

Plastic Work Per Volume

BIM Mechanical Characterization

- Strain prediction of solder material is dependent on stress, temperature, and time
 - A high enough stress will cause the material to plastically deform
 - Solder has a tendency to creep at room temperature; this increases as operating (absolute) temperature approaches the melting temperature
 - Creep, or time-dependent plasticity, occurs when a material's absolute temperature is greater than one-half of its melting temperature
- Viscoplasticity models combine plasticity and creep deformations into one equation to properly define solder in FEA

BIM Mechanical Characterization

- A double-lap shear testing fixture was designed for solder BIM specimens
 - Sample testing at various strain rates and temperatures generates the needed data to characterize the viscoplastic nature of solder
- A script was developed to derive viscoplastic parameters from strain rate test data
 - This will allow the behavior of new solder materials to be modeled in FEA simulations.

Example Stress/Strain Data at Constant Strain Rate (0.02s⁻¹)

Double-Lap Shear Fixture and Sample

Credit: Douglas DeVoto, NREL

Sample Assembly

- Five samples of each BIM (between substrate/copper base plate) were synthesized for testing and included:
 - Silver coating on the substrate and base plate
 - Substrate based on a Si₃N₄ active metal bonding process
 - An interface between 50.8-mm x 50.8-mm footprint
- Samples followed manufacturer-specified reflow profiles, and bonds were inspected for quality

Sample Assembly

Credit: Douglas DeVoto, NREL

Bond Material Type	Name	Comments
Solder	Kester Sn63Pb37	Baseline (lead-based solder)
Solder	Henkel Innolot LF318	Lead-free solder
Sintered Silver	Heraeus LTS043	Based on micron-size silver particles
Sintered Silver	nanoTach®	Based on nanoscale silver particles
Adhesive	Btech HM-2	Thermoplastic (polyamide) film with embedded carbon fibers

Thermal Cycling

Cycle Profile

- Thermal extremes from -40°C to 150°C
- Ramp rate of 5°C/minute, with a dwell/soak time of 10 minutes
- Adherence to JEDEC* Standard 22-A104D for temperature cycling

Shock Chamber

Credit: Douglas DeVoto, NREL

^{*} JEDEC: Joint Electron Device Engineering Council

Thermally Conductive Adhesive Film

- Btech HM-2 (Carbon Fibers within Polymer Matrix)
 - Bonding
 - HM-2 was cut to the base plate dimensions. The sample assembly was placed in the hot press and raised to 195°C, then ~1 MPa (150 psi) of pressure was applied.
 - Reliability Results
 - C-SAM images show less contrast with thermoplastics, but uniform bonds were obtained.
 - After 200 cycles, the bonded interface remained defect-free.

Hot Press

Credit: Douglas DeVoto, NREL (all photo

Silver Sinter

Semikron Silver Sinter

Bonding

- Corners of the Si₃N₄ were rounded off to match the 2-mm radius of copper layers. The sample assembly was placed in a hot press and raised to its processing temperature, then pressure was applied.
- Independent compression testing of substrates at ORNL showed cracking of substrates required between 30 MPa to 50 MPa of pressure.

Reliability Results

- Uniform bonds were obtained.
- After 200 cycles, the bonded interface remained defect-free.

Credit: Douglas Devoto, NREL (all photo:

Collaboration and Coordination

Partners

- General Motors (Industry): technical guidance
- Virginia Tech (Academic): collaboration on synthesis of samples using silver sintered material
- ORNL (Federal): collaboration to determine maximum pressure that
 Si₃N₄ substrates could withstand
- Btech (Industry): collaboration on optimizing thermoplastic BIM for large area attach
- Semikron (Industry): provided bonded samples to NREL using company's silver sintering process
- Heraeus (Industry): collaboration on using low pressure silver sintered materials before products are commercially available
- Kyocera (Industry): provided insight on Si₃N₄ substrate bonding process and advantages over AIN substrates

Proposed Future Work (FY12)

- Derive viscoplastic parameters for lead-based and lead-free solders from double-lap shear test experiments
- Expand strain energy density versus cycles-to-failure models to lead-free solders
- Complete 2,000 thermal cycles on all selected materials using Si₃N₄ based substrates
- Report on reliability of each BIM under specified accelerated test conditions

Summary

DOE Mission Support

 BIMs are a key enabling technology for compact, light-weight, low-cost, reliable packaging and for high-temperature coolant and air-cooling technical pathways.

Approach

 Synthesis of various joints between substrates and baseplate, thermal shock/temperature cycling, high-potential test and joint inspection (C-SAM), and strain energy density versus cycles-to-failure models.

Accomplishments

- Synthesized a number of bonded interfaces between substrate and copper baseplate based on different BIM technologies
 - Lead-based and lead-free solder, sintered silver (micron-size and nanosilver), thermoplastic.
- Initiated FEA for solder bonded interface geometries.

Summary

Collaborations

General Motors, Virginia Tech, ORNL, Btech, Semikron, Heraeus,
 Kyocera

Future Work

- Derive viscoplastic parameters for lead-based and lead-free solders from double-lap shear test experiments
- Expand strain energy density versus cycles-to-failure models to lead-free solders
- Complete 2,000 thermal cycles on all selected materials using Si₃N₄ based substrates
- Report on reliability of each BIM under specified accelerated test conditions

Acknowledgments:

Susan Rogers and Steven Boyd, U.S. Department of Energy

Team Members:

Mark Mihalic Paul Paret

For more information contact:

Principal Investigator
Douglas DeVoto
Douglas.DeVoto@nrel.gov
Phone: (303)-275-4256

APEEM Task Leader

Sreekant Narumanchi @nrel.gov Phone: (303)-275-4062