#### DoE SuperTruck Program

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks







Principal Investigator: David Koeberlein (Cummins)

Presenter: Scott Newhouse

Peterbilt Motors Company

Project ID: ARRAVT081 17 May 2012

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# Relevance - Program Objectives (DoE Vehicle Technologies Goals)

Objective 1: Engine system demonstration of 50% or greater BTE in a test cell at an operating condition indicative of a vehicle traveling on a level road at 65 mph.

#### **Objective 2**

- a: Tractor-trailer vehicle demonstration of 50% or greater freight efficiency improvement (freight-ton-miles per gallon) over a defined drive cycle utilizing the engine developed in Objective 1.
- **b**: Tractor-trailer vehicle demonstration of 68% freight efficiency improvement (freight-ton-miles per gallon) over a defined 24 hour duty cycle (above drive cycle + extended idle) representative of real world, line haul applications.
- Objective 3: Technology scoping and demonstration of a 55% BTE engine system. Engine tests, component technologies, and model/analysis will be developed to a sufficient level to validate 55% BTE.

Baseline Vehicle and Engine: 2009 Peterbilt 386 Tractor and Cummins 15L ISX Engine

# Relevance - American Recovery and Reinvestment Act (ARRA) Goals

Create and/or Retain Jobs

|            |      |      | Projections |      |
|------------|------|------|-------------|------|
| Year       | 2010 | 2011 | 2012        | 2013 |
| Full Time  | 75.5 | 85   | 70          | 45   |
| Equivalent |      |      |             |      |

States: Indiana, Texas, Michigan, Wisconsin, Tennessee, Illinois, California

- Spur Economic Activity
  - Greater Than \$40M Total Spend To Date
- Goals Align With VT Multi-year Program Plan 2011-2015
  - Advanced Combustion Engine R&D (ACE R&D):
    - 50% HD Engine Thermal Efficiency By 2015 (Ref: VT MYPP 2.3.1)
  - Vehicle And Systems Simulation And Testing (VSST):
    - Freight Efficiency Improvement of 50% by 2015 (Ref: VT MYPP 1.1)
- Invest In Long Term Economic Growth
  - Commercial Viability Assessment
  - Adopt Technologies into Product Plans to Meet GHG and CO2 Regs

#### **Overview - Schedule and Budget**

#### **Budget**

DoE Share: \$38.8M (49%)

DOE Spend To-Date: \$20.2M

Contractor Share: \$40.3M (51%)

4 Year Program: April 2010 to April 2014



### Peterbilt Participants

Contract Lead - Cummins



- Suppliers
  - Modine Cooling Module



Eaton – Transmissions



Bendix – Brakes and Suspension



Dana – Drivetrain



Bridgestone & Goodyear – Fuel Efficient Tires



Alcoa - Wheels



Delphi – Solid Oxide Fuel Cell APU



Bergstrom – eSHVAC



- Garmin - 3D Map and Display GARMIN.

Exa – CFD Analysis



- OEM
  - Utility Trailer Manufacturing



- End User
  - US Xpress



### Comprehensive <u>Approach</u> with Enabling Technology



# <u>Approach</u> – Freight Efficiency Path to Target Original Plan

|                                    | Drive Cycle<br>Vehicle Demonstration  | 24 Hour Duty Cycle<br>Vehicle Demonstration |  |
|------------------------------------|---------------------------------------|---------------------------------------------|--|
| Technology                         | Freight Efficiency<br>Improvement (%) | Freight Efficiency<br>Improvement (%)       |  |
| Vehicle<br>Aerodynamics            | 14%                                   | 24%                                         |  |
| Engine                             | 25.5%                                 | 27%                                         |  |
| Transmission/<br>Axles             | 3.5%                                  | 3.5%                                        |  |
| Rolling<br>Resistance              | 3.5%                                  | 3.5%                                        |  |
| Route<br>Performance<br>Management | 2.5%                                  | 2.5%                                        |  |
| Idle<br>Management                 | N/A                                   | 10%                                         |  |
| Vehicle Weight                     | 3%                                    | 3%                                          |  |
| Total                              | 52%                                   | 73.5%                                       |  |
| Target                             | 50%                                   | 68.5%                                       |  |

#### Approach – Freight Efficiency Path to Target



#### **Overview - Program Barriers**



Underhood Cooling with Waste Heat Recovery



Vehicle and Engine System Weight Reduction



Engine Downspeed (Reduced Engine Speed)

- Powertrain Components
- Vibration/Customer Acceptance



Trailer Aerodynamic Devices that Meet Operational Requirements



Vehicle and Powertrain Communication Speed



= To Be Validated on Demonstrator Truck

#### DoE SuperTruck Program



## 587 Engineering Mule – Technical Progress



- Successful Packaging of Technologies
- No Increase in Frame Length

# Truck/Trailer Weight – Technical Progress



# Truck/Trailer Weight – Technical Progress



#### Trailer Development - Technical Progress





- Trailer Build Complete
- Preliminary Aerodynamic Road Test Complete
- End Customer Input In Process

# Aerodynamic Improvements – <u>Technical Progress</u>



<sup>\*</sup> Cd's Shown Are Adjusted to SAE J1252 Baseline Using

<sup>%</sup> Average Deltas From o and 6 Degree CFD Runs

## Aerodynamics - Approach



#### Milestones and Technical Accomplishments

- March 2011 to March 2012 Technical Accomplishments
  - Path to Target Analysis for Engine and Vehicle Efficiencies
  - Aerodynamic Components Fabricated and Initial Testing
  - Initial Vehicle Tests of Cummins Waste Heat Recovery
  - Initial Testing of Advanced Transmission
  - Performance Assessment of SOFC APU
- March 2012 to March 2013 Future Work
  - Engine Calibration and Optimization Work
  - Vehicle Testing of Advanced Transmission
  - Testing of Tractor Trailer Aerodynamics Solution
  - Build and Test Vehicle Demonstration 1 (Objective 2a)
  - Design Freeze Vehicle Demonstration 2 (Objective 2b)
  - Initial Calibration of Second Generation of SOFC APU

#### Summary

- Program Remains On Schedule
  - Meeting the ARRA and DoE VT MYPP goals
- Roadmaps Updated for Freight Efficiency and 50% Engine Efficiency
- Vehicle Packaging and Integration Proceeding Without Major Issues
- Build and Test of Sub-Systems Are On The Planned Cummins Waste Heat Recovery Vehicle Test (Objective 2a)
- Advanced Transmission Dynamometer and Vehicle Test (Objective 2a)
- Solid Oxide Fuel Cell 2nd Design Iteration Lab Tests (Objective 2b)