

Super Truck Program: Engine Project Review

Recovery Act – Class 8 Truck Freight Efficiency Improvement Project

PI: Kevin Sisken (Engine); Derek Rotz (Vehicle)

Presenter: Kevin Sisken

Detroit Diesel Corporation May 17, 2012

Project ID: ACE058

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

• Project start: April 2010

• Project end: March 2015

• Percent complete: 40%

Budget

- Total project \$79,119,736
- Engine Budget \$31,633,001
 - DOE Share^(*) \$4,494,000
 - DTNA Share (*) \$9,042,000

(*) Program total through Dec 2011 for engine R&D expenses only, vehicle R&D expenses reported separately

Barriers

- High efficiency SCR unit had higher than desired pressure drop. Design being iterated.
- Integrate electric power generating systems with hybrid power bus and controls

Partners

- Department of Energy
- Oak Ridge National Laboratory
- Massachusetts Institute of Technology
- Atkinson LLC
- Daimler Trucks North America
- Daimler Advanced Engineering

Objectives and Milestone

Develop and Demonstrate a 50% total increase in vehicle freight efficiency:

- At least 20% improvement via a heavy-duty diesel engine capable of achieving a 50% brake thermal efficiency
- Identify key pathways towards achieving a 55% brake thermal efficient engine through modeling and analysis

Timeline	Phase Description	Milestones
4/10–3/11	(1) Technology Modeling/Analysis and Initial Component Development and Demonstration	Develop analytical roadmap: •50% vehicle freight efficiency improvement •50% engine brake thermal efficiency
4/11–3/12	(2) Experimental Demonstration of Technology Building Blocks for Intermediate Goals	Experimentally demonstrate technology building blocks: • 25% vehicle freight efficiency improvement (system level test) • 46% engine brake thermal efficiency
4/12–5/13	(3) Technology Identifications and Final Component Development and Demonstration	Identify and initially develop technology building blocks: *50% vehicle freight efficiency improvement (system level test & analysis) *50% engine brake thermal efficiency
6/13–6/14	(4) Experimental Demonstration of Technology Building Blocks for 50% Engine Thermal Efficiency and 50% Vehicle Efficiency	Experimentally demonstrate technology building blocks: *50% vehicle freight efficiency improvement (system level test) *50% engine brake thermal efficiency
7/14–3/15	(5) Final System Integration and Demonstration	Experimental demonstration: *50% vehicle freight efficiency improvement (entire vehicle test) *50% engine brake thermal efficiency (engine test) *55% engine brake thermal efficiency (engine analysis)

Super Truck Core Engine Development

Demonstrate 50% brake thermal efficiency via:

- Engine downsizing (higher BMEP)
- Higher compression ratio
- Air system optimizations, reduced EGR
- Reduced parasitic
- Waste heat recovery

Higher Peak Firing Pressures

- Raised peak firing pressure by 10% in test. Will increase by 20% over baseline this year.
- Increase compression ratio by 2 points over the baseline
- Re-matching injector tip to new piston bowl

Air System Rematch

- Leveraging higher SCR conversion efficiency to reduce EGR rates
- Higher airflow rates requires a turbo rematch
- Prototype turbocharger on order
- Prototype turbocompound unit on order

Increased Engine Out NOx

- Significantly reduced EGR
- Calibration adjusted to maintain good SCR temperatures
- Significant bsfc benefit measured

Aftertreatment

- Thinner wall DPF showed very low dP. DPF will benefit from higher NOx/PM ratio (low soot load)
- Increased SCR cell density and alternative catalyst material. Testing showed high SCR conversion efficiency (95 to 100%), but high SCR dP.
- Iterating SCR design

Engine Parasitic Reduction via Downsizing

- **Engine Downsizing Via Cylinder Deactivation**
- Cylinder deactivation was evaluated as a way to increase BMEP
- Measurable BSFC benefit at low loads
- Limiting factors (namely exh. temperature and airflow) necessitate turbocharger rematch.
- Not being pursued further

- 40% motoring power reduction at cruise RPM
- Higher BMEP at road load

SuperTruck Engine Controls – Objective

Extensive engine mapping is used in neural network model training

- Develop a predictive engine controller
- Include a fuel efficiency optimizer
- Integrate predictive vehicle information
- Reduce calibration complexity

Emissions & fuel economy models enable on-board BSFC optimization

Predictive route information enables enhanced use of engine optimization.

Engine Mapping

- Engine controller relies on extensive engine mapping
- Data is obtained under transient conditions

Controller Evaluation Over Transient Cycles

- Extended number of controlled variable
- Evaluated controller on SuperTruck routes (20 and 40-minute dyno cycles)
- Controller response is predictable and repeatable

Integrate With Super Truck's Predictive Capabilities

- Demonstrated controller's ability to modulate NOx in real-time
- 5% lower BSFC over highway ST cycle
- 4.8% lower BSFC over urban ST cycle
- Will use route information (GPS, terrain, traffic, etc.) to leverage the engine controller's ability to optimize the engine in real-time

Reduced Engine Parasitics

- Water pump improvements completed, 0.5% BSFC improvement
- Development work on lower friction kit (piston, rings, liner) continues. Initial bench testing was positive, engine testing did not show same results. Development continues.
- Evaluating alternative oils

MIT Friction

- Evaluated where potential for friction improvement was largest with special attention to oil temperatures
- Looking at component optimizations for oil temperature control within system for friction reduction
- Significant modeling completed and effort continues

Waste Heat Recovery Test Bed

- Test fixture designed, and built
- Allowance for additional instrumentation and easy installation in a test cell
- Component location relative to each other same as planned for vehicle

Waste Heat Recovery Control System

- Test bed control system designed and functional
- Further refinement in process to allow for running on vehicle

12

Waste Heat Recovery Modeling

- Modeling of waste heat recovery continues for both component sizing and overall system optimization
- Multiple models being utilized; Daimler in-house model and Oak Ridge National Laboratory model

Working Fluid

- Selection criteria considered:
 - Low environmental impact, thermodynamic performance, acceptable operating pressures, high thermal stability, etc.
- Ethanol selected

Waste Heat Recovery Testing

- Test fixture installed in dedicated waste heat recovery test cell
- Successful shakedown of fixture and controls
- Boiler and condenser evaluations in process
- Expander/generator in final assembly

Waste Heat Recovery Packaging

- Current system using exhaust gas recovery only. Packaging and design of EGR recovery in process
- Packaging studies in vehicle underway. Significant studies into cooling system impact completed (DTNA lead)

Expander

- Scroll expander selected as primary option for WHR
- Magnetic coupling to allow hermetic sealing of expander and simple interface to generator
- Expander in final assembly. Supplier will perform basic testing. Delivery expected April 2012.

Generator

- Partnered with Oak Ridge National Laboratory (ORNL) for development of generator
- Utilized low cost wound field generator as opposed to permanent magnet machine.
- Prototype build in process with delivery expected April 2012.
 ORNL will perform performance testing.

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Vehicle Only Benefits (not Thermal Efficiency)

- High NOx/PM → Passive only particulate filter regeneration
- Predictive engine controls
- Weight neutral design; added waste heat system, downsized the engine
- Engine geared for low rpm operation
- Clutched air compressor

Collaboration and Support

- Department of Energy Head Quarters
 - Gurpreet Singh
 - Roland Gravel
- National Energy Technology Laboratory
 - Carl Maronde
- Oak Ridge National Laboratory
 - Waste heat recovery system
- Massachusetts Institute of Technology
 - Low friction technologies
- Atkinson LLC
 - Advanced engine controls

Summary and Future Work

- Second year of Super Truck program complete
- Engine has demonstrated 46.2% brake thermal efficiency
- Plans firmly in place for next level of performance improvement:
 - Higher compression ratio including new piston bowl and injector tip
 - Iterate SCR design for lower pressure drop
 - Reduced engine parasitics
 - Continue controls development and refinement
 - Waste heat regeneration development
 - Expander and generator
 - Add EGR waste heat recovery
 - Integrate onto vehicle

