

Materials

Carol Schutte Materials Technology Team Lead

Materials Technology Budget by Activities

	FY'11 \$K	FY'12 \$K	FY'13 \$K
Major Activity	CR value	Appropriations	Request
Materials Technology	49,620	42,071	50,000
Lightweighting Materials	29,097	27,284	38,780
Propulsion Materials	12,962	12,576	9,695
HTML	5,662	971	0
SBIR/STTR	1,375	1,241	1,525

Materials Technology Goals FY 2012

By 2015, validate (to within 10% uncertainty) cost-effective weight reduction of passenger vehicle body and chassis systems by 50% with recyclability comparable to 2002 vehicles

Develop high
performance costeffective materials to
address key technical
materials deficiencies
limiting the performance
of propulsion systems

Provide state-of-the-art materials characterization facility to resolve materials-related barriers impeding the success of VTP research

Lightweighting Materials Structure and Benefits

Goal: By 2015, validate (to within 10% uncertainty) cost-effective weight reduction of passenger vehicle body and chassis systems by 50% with recyclability comparable to 2002 vehicles

Vehicle class (weight reduction target)	Fuel Efficiency improvement % (per vehicle)	Reduced Fuel Use % (per vehicle)	GHG reduction % (per vehicle)
Cars (30%)	21	17	17
Cars (50%)	35	26	26

Benefits assume that for each increment of 10% weight reduction a benefit of 7% efficiency is realized. (1.)

1. Duleep, K. G. "Analysis of Light Duty Vehicle Weight Reduction Potential" July 2007 p. 1-3 Data and analyses provided by P. Patterson VTP, DOE

Lightweighting Materials

Goal: By 2015, validate (to within 10% uncertainty) cost-effective weight reduction of passenger vehicle body and chassis systems by 50% with recyclability comparable to 2002 vehicles

BAA/Solicitation (NETL)

Predictive Modeling for Automotive
Lightweighting Applications and Advanced
Alloy Development for Automotive and HeavyDuty Engines

Predictive Engineering Carbon Fiber Composites

ICME 3rd Generation AHHS

Cast Lightweight Alloy Development for for Light-Duty Engine Automotive Applications

Cast High-Strength Alloy Development for Heavy-Duty Engine Applications

Reduce the weight of the vehicle by 50%

Enable downsized (lighter weight) engines that withstand higher peak cylinder pressures (metric here)

The objective is to develop a lightweight material that can enable light-duty engines to REDUCE WEIGHT AND increase their efficiency by 30%

Develop a high strength material that can enable heavy-duty engines to increase their efficiency by 30%

Weight Reduction Potential of Materials

Lightweight Material	Material Replaced	Mass Reduction (%)	
Magnesium	Steel, Cast Iron	60 - 75	
Carbon Fiber Composites	Steel	50 - 60	
Aluminum Matrix Composites	Steel , Cast Iron	40 - 60	
Aluminum	Steel, Cast Iron	40 - 60	
Titanium	Alloy Steel	40 - 55	
Glass Fiber Composites	Steel	25 - 35	
Advanced High Strength	Mild Steel, Carbon	15 - 25	
Steel	Steel		
High Strength Steel	Mild Steel	10 - 15	

Program Staff - Office of Transportation Technologies, Energy Efficiency and Renewable Energy, Office of Advanced Automotive Technologies R&D Plan - Energy Efficient Vehicles for a Cleaner Environment, DOE/ORO/2065, March (1998) pp. 75 - 88.

Propulsion Materials

Goal: Develop high performance cost-effective materials to address key technical materials deficiencies limiting the performance of advanced combustion engines, electric-drive systems, and use of renewable fuels

Goal: Provide state-of-the-art materials characterization facility to resolve materials-related barriers impeding the success of VTP research

HTML (ORNL) \$971K

Significant Accomplishments

Multimaterial joining – Mg

 Prototype-scale demonstration new laser-assisted self piercing rivet and friction stir weld (USAMP)

RT Processing of Al alloys-

 Enhanced formability using pulse pressure forming 2.5x to 6x increase in safe strains (PNNL)

Non-Rare Earth Mg Alloy

 Significantly improve ductility crash energy absorption (PNNL)

Propulsion Material developed Cast

austenitic stainless steels for turbocharger Mg alloy with comparable crash energy to Al with 20% weight savings

housings and turbine-wheel/shaft assemblies (ORNL/Honeywell)

- CF8C-Plus with greater strength than HK30Nb stainless alloy > 750oC
- Better creep resistance
- Lower cost by 33% than HK30-Nb alloy

Joining demonstration: laser assisted (left) self piercing rivet and FSW (right)

AI RT Pulse Pressure Forming

Contact Information

Carol Schutte

Materials Team Lead

202-287-5371

Carol.Schutte@ee.doe.gov

www.vehicles.energy.gov