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l. Introduction

IV. Understanding the ESM signal for LiCoO, VI. Describing ionic transport in LiCoO, thin film cathodes

ESM signal - lonic transport of Li-ions described by diffusivity D and activation energy E, D = exp|-E./RT)
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Processes on different length scales determine battery performance.
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The temperature-dependent ESM signal for each individual pixel show linear curves in Arrhenius-type plot. From the slope, we can extract
spatially resolved maps of the activation energy (after image alignment and Gaussian filter application to reduce pixel-to-pixel noise).
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through bulk and across interfaces * pores » dislocations

Balke et al., Adv. Mater. 22, E193 {2010)

In order to optimize battery functions, the role of interfaces, microstructure, and
defects in the electrochemical process need to be investigated. From analytical description (Anna Morozovska): Purely diffusional case
The activation energy map shows regions of zero where the sample surface

Scanning Probe Microscopy is a established tool to measure local strains Displacement vs. Frequency Displacement vs. Voltage is very steep (poor tip-sample contact).

and currents on the nanoscale and can be used to characterize battery I
materials.
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The activation energy within grains is relative homogeneous with lower
values at some grain boundaries.
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Based on the operational regime, ESM can be used to investigate the bias-induced Li- !
Balke et al., submitted (2012)

ion transport in electrode materials, the transport across the electrode/electrolyte
interface, or the transport through the full battery.
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Correlation of ionic transport and surface morphology
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High frequency excitation bias
can be applied in electrolytes up
to 1M ionic concentration.
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Deflection ESM Layered structure of LiCoO,
F ' results in step edges.
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