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DOE SRCLID Programs

Lightweight Metals

Steel Materials

Polymeric Materials

Vision: Develop multiscale physics-based material models for design optimization of
components and systems made of lightweight materials in automotive applications.
Mission: (1) Provide a design methodology that includes physics-based material

models that include uncertainty in consideration of the material history;

(2) Develop new materials and math-based tools for use in next-generation

vehicles under various crash and high-speed impact environments.

Goals: (1) an experimentally validated cradle-to-grave modeling and simulation effort
to optimize automotive and truck components for various materials;

(2) a multiscale (“From Atoms to Autos”) modeling philosophy with
characterization of the microstructure-property relations by evaluating
various length scales;

(3) an integrated K-PhD educational program to educate students on
lightweight designs and impact scenarios.
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Approach/Strategy

Development and Deployment
of
Multiscale Lightweight Material Program

1. Quantify history dependent process-structure-property relationship
2. Repository material data base and model in cyberinfrastructure

3. Verification, validation and demonstration

4. Establish close relationship with industrial partners
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Computational Manufacturing and Design

Mission: To optimize design and manufacturing processes, we integrate multidisciplinary
research of solid mechanics, materials, physics, and applied mathematics in three synergistic
areas: theoretical modeling, experimentation, and large scale parallel computational simulation.
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Multiscale Modeling
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CyberInfrastructure

IT Technologies Conceptual Design Process Engineering Tools
(hidden from the engineer) (user-friendly interfaces) (CAD, CAE, etc.)
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Lightweight Metal - Magnesium Overview

GOALS

U Deploy and adapt current capabilities developed at CAVS
in materials characterization and multiscale modeling
approaches to establish a Lightweight Materials Research
and Development Center.

U Drive the advanced modeling and experimental capabilities
to reduce the manufacturing cost of Mg alloy vehicle
components, and enhance the use of Mg in the automotive
industry.

U Impact the growth of the regional economy and draw
regional/national/international company participation into
education, services and research on Magnesium alloys.

Tasks and Accomplishment:

Task 1.1 — Internal State Variable Material Models
Task 1.2 — Cyberinfrasstructure

Task 1.3 -- Fatigue Performance

Task 1.4 — Corrosion

Task 1.5 — Material Design

Task 1.6 — Simulation-Based Design Oprimization
Task 1.7 — Solidification Microstructure Modeling
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COST SHARE PARTNERS
ABAQUS Ford (MI)
ALTAIR GM (MI)
ESI DOE
SIMUFACT-AMERICA Lehigh Univ
F-TECH Virginia Tech

GENESIS SYSTEM

USAMP-HIMAC Team
USAMP-MFERD Team
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Steel Program Overview

Goal:

Deploy and adapt current enhanced capabilities developed at CAVS
in multiscale materials modeling and characterization to steel
manufacturing, process optimization, and alloy design impacting the
growth of regional economy and drawing
regional/national/international company participation into
education, services, and research on ferrous alloys.

Enmgy por Atom (aV)

Tasks and Accomplishment:

e Task 2.1 — Materials Design of Lightweight Alloys

» Design a novel high strength steel alloy with improved
formability and strength for automotive use.

e Task 2.2 — Solidification and Phase Transformation in
Steel Alloys

» Explore the feasibility of an all-local approach to
solidification microstructure modeling in steel alloys with potential
for large-scale parallel simulations of dendritic structures.
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Cost Share / Corporate Partners:

Severstal (MS), Nucor Steel (MS), Schultz (MS), Optomec
(NM), Ice Prototyping (TX), POSCO (Korea), SAC, (Korea),

DFT Fe-X

interatomic potential

Dendrite Growth

in Cubic Systems Zinc Bath Coating

KITECH (Korea), Dayou Smart Aluminum (Korea),

International Zinc Association
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Polymer Program Overview

Goal: Establish high fidelity predictive tools for polymeric
materials to be used for fabrication/manufacturing, design, and
optimization of complex engineering boundary value problems and
structural components. This research focuses on the development of
multiscale material models which are experimentally validated to
obtain process-structure-property relationships for polymers.

Tasks and Accomplishment:

Task 3.1 — Polymers

» Develop a microstructure based ISV model capable of describing
structure-property relationship to predict the mechanical behavior of
polymers.

e Task 3.2 — Carbon Fiber Composites and Nanocomposites
» Design low-cost nanoreinforced and continuous composite systems ;
Develop a multiscale modeling methodology for predicting evolution and
failure of structural nanocomposites and continuous fiber composites.

Stress-Strain Responses by ISV and Low-scale Models
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e Task 3.3 — Biodegradable composites

» Refine the processes in lab-scale on fiber retting/treatment process,
natural fiber composite products from kenaf bast fiber, with a
potential to scale up the process; Develop predictive tools on the
developed natural fiber.

e Task 3.4 — Biomaterials

» Determine the structure-property relationships of both soft biological
tissues and animal outer armor. Use the relationships to develop
material models for implementation into finite element codes.

Nano-fiber Interface Model

Human Head/Brain Model

Incident
wave

source
point

Cost Share / Corporate Partners:

American Chemistry Council, Mitsubishi Motors, Kengro,
Louisiana Pacific, MIMICS, Alpha Star
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Magnesium Building Block
Development & Demonstration

Internal state variable (ISV) material model with twinning, texture, damage, ..
Lower-scale modeling effort - DFT, molecular dynamics, crystal plasticity,
twinning and dislocation mechanisms, leading to Alloy Design concepts
3. In-house lab-scale experimentation - extrusion, sheet bending,

post forming, fatigue, corrosion, casting, recrystallization,...
4. USAMP/ICME Mg demo project

N =
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ISV Material Model Development
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DFT-guided alloy design

Mg-Zn-Al ternary alloy: Phi phase
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Alloying Effects on Properties

| What effect do alloying elements have on stacking fault energies?

[03.18)))3))))) )2 )P EBH3))EEe)
[0:92:02)))3) 0 _3)n35))8r0Ke]
© Oy AP OTD O
O @DHI0 00
O CooXO O
[s>]
1 1

0T T ; — T T 1

— O—Olm_n.'l\lg_ | zZr _
g DFT S 0 Wil Gd
E 3001 7 OZO::!:EZ..: 7] Ca 5 08 1
o | T s | Mg
5 ! 7T Vi Ce
£ 200 : bowmz] | L Hy = E[Mggy(ALZn1_,)es]
5 : s | sn - 2B (MggyAlos) — (1 - ) E(MggZngs)
g i é\ln Basal Slip:
=7 100 4 h .
g : \ si v 0.7 MPa
L . i

e Order of effect of The Tau phase - Mg;,(Al,Zn),g

o 05 1 15 2 25 3 35 s impurities on Mg )
Along <10-10> (a) (A) —> SFE + Icosohedral quasicrystal

— Structure determined — 1957 — Bergman et. al.
+ Cubic - space group im3

Substitutional Element Effects + Jnit-Bergman atom cluster
. . + Exists in a wide compositional range
on Stacking Fault Energies

Grey —Zn

Green- Al

Structure and Properties @:zun

4 e o
-
Of Inte rm etal I Ics Image from - http://cst-www.nrl.navy.mil/lattice Image from - Sun, W., et.al., Mat. Sci. Eng. -

Lausanne- A. 294-236 (2000): 327-330 )




Alloy Design: Multiscale Strategy for Twinning

MAGNESIUM
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In-house Lab-scale Experimentation

(Stage I & II) (Stage III &IV) (Stage V) (Stage VI)

Materials/Mechanical
Properties
Characterization
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MISSISSIPPI STATE

USAMP/ICME Mg Demo Project

Obj ectives : Cross Beam

Predict component’s mechanical responses and Galvanized Steel
process-structure-property relationship using
methodology developed by ICME building block G , s
program. =

Upper Rail

AZ31 F |

- Cast/Shock Tower: failure location and load- ok i
displacement curve under monotonic and fatigue Tower o
loading. Azo1 -

- Extrusion/Lower Rail: texture at different ‘ Lower Rail
locations in a section profile after extrusion and
yield strength at room temperature.

AM30

- Sheet/Upper Rail: texture after bending.
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Validation Effort for Mg Shock Tower: Zone Mapping Method

Computer Aided Design <77~

Mesh

Material model - DMG
Model Calibration

Boundary condition and
Loading .

Results that account for heterogeneity of
material due to casting process — Failure
location and load-displacement curve
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ICME-Demo Shock Tower — Validation Result
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Integration of Extrusion Work
INDUSTRY-TYPE

|

Sub-Scale Indirect
Extrusion Experiments

Sub-Scale .
Fixture Instron Machine

S 4
Data Recordec

» Load-time
» Temperature-time

= Texture

IV

Crystal Plasticity Material
Model

slip/twin systems in Mg

Texture Predictions

Texture Predictions
= VPSC Code
= Voce hard law
= Dislocation-based hard law

Texture Prediction during
Extrusion (T-M Problem) &
Post-Forming Structural

EXTRUDED PROFILE

Porthole Die (Timminco)

Double
Hat
Profile

11
FEM Modeling of
Extrusion Process
HyperXtrude (HX)
Eulerian-ALE Mesh

I streamlines

Numerical Analysis
= Validate T-M problem
» Streamline data
= Simple material model

Performance

v
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Ram

Post-Forming Analysis

u Texture

Compression
Samples

| ] O'Y

Macroscopic Material
Model
120 Tig Alioy AWIS0
100f- p—— L
N A (R o,
= a0 J s’ -
E sof—:.'"_.-:.-"" 107 o
P T
] P
20k T0° 4-A50°C
«  Data
[ . . L Model
0 51 02z 03 04 05
effective strain
Material Modeling
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Ram

speed ->

Post-Forming Analysis
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Sheet Bending FE Analysis

Perform bending simulation using a plasticity Abaqus *Plastic and Umat plasticity
subroutine (no damage).
Post-process results into VPSC for texture prediction

(Avg: 75%)
= 372.0
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Texture/Twinning Prediction of AZ31 Sheet
during Bending
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Microstructure-Sensitive Fatigue Modeling of
Cast Mg AM60 and AZ91 Shock Tower
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Multi-Stage Fatigue (MSF) Modeling of AZ31 Products

0.007 7 T™  MSF for AZ31 Mg Alloys
\ ,
\ -\_. - MSF-Extruded
20,006 - \ . ——— MSF-Plate
S AR —— MSF-Sheet
%- \ \'\ @ Extruded
S . A Plate
g 0.005
£
©
¢ 0.004
N
400031 4 Ay e~
0.002 ==

103 104 105 106 107
N., Number of Cycles

A MSF model was developed for each of the three product
forms of AZ31 alloy along with strain-life fatigue data
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MultiStage Fatigue-Joints Model (MSF-J)

Overview
Synergy with
other research
Inputs Model
trusts

mechanical and joint
simulations geometry: A physically
motivated and
mechanics-based

. approach:
Loading type incubation and

Macroscale (structural
Finite element j‘> tress :: )| crack growth

Thermo- > Microstructure : MSF-J

10° 104 108
Initiation Life (Cycles)

analysis of
components)
structure

Misssip e

INIVERSITY

Capture process
induced
variation in
fatigue
performance
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CyberInfrastructure

https://icme.hpc.msstate.edu/
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Progress Report of CyberInfrastructure

new: Wiki improved: improved: new: the repository Just

interface, security DMG of codes started

database
of experimental
data
and material
constants

=job submission
and monitoring
service
=workflows
=Autonomous
computing

online
model calibration

repository

of source codes
tools

Task 2.1, Task 2.2 Task 2.3, Task 2.4 Task 2.5

Task 2.7

| J

Analyze: Model
Model Parameters
Calibration
Search &
View
Upload
Experimental
D

ata Download
Constants for
Simulations
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Repository of Codes

Example: Internal State Variable Plasticity-Damage Model—Documentation

Graphical User Interface

: : : The remainder of this report describes the user interface of the stand-alone version of DMGfit.
Appendlx A‘ MSU ISV DMG 1 0 PrOducthﬂ MOdel EquathnS The documentation for the Web version of DMGHit is online at http://ccg.hpc.msstate.edu/
ccgportlets/apps/cmd/htmlVhelp/Help.htm.

The MSU ISV DMG 1.0 production material model is given by the following equations. The A snapshot of the DMGfit GUI in operation. annotated to highlight the logical groupings of the
pertinent equations in this model are denoted by the rate of change of the observable and internal controls. is shown by Figure 3.
state variables. The equations used within the context of the finite element method are given by, [Menu items | (R =
. D Data set controls )
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Repository of Materials Database

Two Views of the Same Database

by material

g L@
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Data type | All Data Types
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& £ Rhodium
-1 Rubber
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-] Titanium
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Consistency
the same
organization and
appearance for the
repository and
model calibration
tools

by project/user
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Future Work

* Develop and validate material and process models for Mg
alloys and deploy tools for use, i.e., MFERD Phase II demo
project.

» Establish Mg alloy design methodology and verification by
using lower-length scale simulation tools and lab
experimentation.

» Establish close partnership with steel and plastic industries
so as to direct R&D&A in steel and polymer programs.

* Continue the CyberInfrastructure effort and establish a
national and an international user base.
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Technical Back-Up Slides
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Points/Streamlines for Texture Predictions

HX-FEM of Porthole
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Current Issues with HX Particle Tracer:

» HX particle tracer writes HUGE files for TET
elements.

» HX developers are working on a improved
version of the particle tracing capability to:
- Reduce the size of the file for TETs
- Check tr(L)=0

» Altair is also working on other more
efficient tools for particle tracing.
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Need of DRX Models for Mg

o .
b Twinning sweeps .,/ 7

" activates and necklace
! DRX grains nucleate

20y i . around parent grain.
¢ 1 I
:ﬁ i

'y

s &
. !:.':'
, .

' grains.
0 pie Py S < 8o} 1
POk 4 ‘q}ﬁ ~So -1/
bt 3 p " ~ ~ B 0.8
—_— é‘;’i_\;g‘ :?u‘a' \\; 3 //
& 60}
p= i 0.5s™
%ﬂ\ -
) [”\ -
B —,49 =) =~
P g f 0.1s SQ
_- a | ~
| L - =~ i
—20F  0.001 5™ T~
L . .~
» Y : \ N\
Twinning originates in parent (e }‘. ‘ 1
grains and DRX grains grow 0 _0'2\\ —0.4

along twin boundaries. True DIQStiC strain

1010

< X ED
s T v o & t l
“ha - = rials 0001 2110

Initial microstructure at Grain boundaries begin Grains impinge and ripen. Thin lelfﬁc“lal‘ {10-12}twing ‘
450 °C. to migrate. (in red) appea ”AV"’
X & UNIVEROIT T




34
Methodology Applied to Model Mechanical Response of Polymers

1—D| EXPERIMENTAL DATA
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= for MATLAB
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Highlights of Natural Fiber Research

Chemical Fiber Retting and Inorganic Nanoparticle Impregnation

Chemical retting Adjust pH value to 7.0
=)

Chemical With 5% NaOH And wash out chemical
COIIIpOSitiOIlS At 160°C for 1h.
Analysis
MSU North —_— : ‘
Farm Impregnate with

Na,CO;,

.

Bast & Core

100°C, 130°C, 160°C
N32C03+ CaClz Na2C03:CaC12=1:1,1:2) CaCO3

(mol:mol)

* Fiber mechanical properties

* Surface Roughness

e Surface Morphology &
Topography
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