2020 DOE Vehicle Technologies Annual Merit Review June 2020

Simulation Tool for Energy-Efficient Connected and Automated Vehicle Control Development (EEMS 086)

Dominik Karbowski, Jihun Han, Namdoo Kim, Phil Sharer

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview Timeline

- Project start: Oct. 2019
- Project end: Sep. 2021
- Percent complete: 15%

Budget

- Total Funding (2 years): \$600,000
- FY20 Funding: \$300,000
- FY21 Funding: \$300,000

Partners

- Argonne: lead
- Hyundai America Technical Center Inc. (HATCI): industry partner

Barriers

- Lack of tools dedicated to research energy efficiency in the context of powertrain, connectivity, and automation
- User interface and usability critical for deployment of new software/models
- Real-world data for model calibration is hard to come by

Approach **HATCI:** testing and collection of "environment-aware" driving data Currently: a research tool Automated scenario generation Data processing Limited number of models and scenarios Limited/no GUI, mostly command line Human driver model and Human driver model with limited validation scenario development ARGONNE Interface and features **Objective: a commercial and professional** development tool Validated state-of-the-art human driver model Release generation and Graphical user interface commercialization Use cases relevant to automotive R&D engineers

HATCI engineers testing RoadRunner and providing feedback

Milestones

Milestone Name/Description	Due Date
Alpha release of RoadRunner delivered to HATCI	07-2020
Preliminary analysis report on driving data from HATCI	10-2020
RoadRunner human driver model validated with test data from HATCI	01-2021
Beta release of RoadRunner to HATCI – a version close to final version, including a library of default CAV scenarios	07-2021
Final release of RoadRunner	10-2021

ACCOMPLISHMENTS 1 – HUMAN DRIVER MODEL DEVELOPMENT

Human Driver Model Overview

- Action model initially developed in SMART (EEMS016)
- Hyundai data enables further development of Perception & Decision model

Perception & Decision (P&D) model to capture the cognitive process of human brain

- Determine driving regimes and their parameters
- e.g., determine the acceleration time and distance after a vehicle launches from a stop

Action model to capture human driving behaviors impacting the state of the vehicle

- Generate vehicle state trajectories
- e.g., using P&D parameters, compute vehicle state trajectories for an acceleration regime

Completing Human Driver Model Using Real-World Data

Driving Data Provided by Hyundai

Source			Customer	Test
Data amount		nount	Unlimited	Limited
Ņ		Scenarios	Unlimited	Limited
ariet	# of vehicles		200+	1
Data variety	# of drivers		100+	1+
		<pre># of vehicle class/type</pre>	10+	1
Data quality	Sa	ampling rate	1Hz	10Hz+
	s	Motion	0	0
	igna	Powertrain	0	0
	ted s	PV	0	0
	Collected signals	GPS	Х	0
	Ŭ	Video	Х	0

Model Development

1. Data Generation and Exploration

- Scenario categorization
- Design of test experiments
- Automatic data processing

2. Model Development

- Perception & Decision Model
- Action Model
- Development initiated in SMART Mobility (EEMS016)

3. Model Calibration and Validation

Outcome ✓ High-fidelity dynamic driver model ✓ Good baseline for any CAV control development

PV: Preceding Vehicle, GPS: Global Positioning System

• Multiple factors influence driving behaviors (complex and interacting with each other)

Dedicated Testing with Vehicle Provides More Information about Surrounding Environment

- 1 Hyundai vehicle, various drivers, in Michigan area
- 12-month collection period to start in 2020

ACCOMPLISHMENTS 2 – INTERFACE DEVELOPMENT

Developing Use Cases Relevant to RoadRunner Users

1. User Defines Scenario and Selects Powertrain

- Route (from HERE maps or synthetic)
- Connectivity level of traffic signals
- · Number of vehicles
- Vehicle class and powertrain (Autonomie)
- · Connectivity level of vehicles
- Driving control (human, automated, eco-driving, etc.)

4. User Analyzes Simulation Results

- Energy consumption
- Powertrain operating conditions
- Space/time trajectories
- Intersection crossings

Building upon Argonne's Simulation Software

- Reusing many components of AMBER/Autonomie interface and backend code
- Graphical User Interface (GUI) will enable users to run RoadRunner simulation easily

CLOSING REMARKS

Response to Previous Year Reviewers' Comments

Project has not been previously reviewed

Partnerships and Collaborations

HYUNDAI AMERICA TECHNICAL CENTER, INC.

CRADA partner

- Real-world driving data
- Tool use cases
- OEM perspective
- Beta testing

Lead

- Model development
- Tool development
- Tool deployment
- Builds upon SMART research (EEMS016)

Remaining Challenges and Barriers

• **On-road data collection** for human driver model development:

- Challenge in getting a representative sample;
- Duration (1 year) and sample of non-professional drivers should address this to some extent
- Customer data processing for human driver model development:
 - Challenge in identifying driving regimes, even though full context not available (No GPS, no road information, no video)
- User interface needs further development to accommodate more use cases.

Future Work

- Instrument and deploy vehicle for on-road testing (HATCI)
- Processing of HATCI data
- Human driver model calibration based on collected data
- Baseline driver and CAV model preparation for release
- User interface development & testing
- Commercialization

Any proposed future work is subject to change based on funding levels

- Project aims to commercialize RoadRunner, a tool enabling development of energy-focused CAV controls
- A professional **graphical user interface** will ensure high level of usability
- In this project, model development focused on human-driving model
 - Hyundai to provide large amount of real-world driving data
 - Calibration of driver model from SMART project
- Development with OEM involvement will ensure tool meets the needs of industry
- RoadRunner improvements and maturation will help conduct other DOE-funded research activities

TECHNICAL BACK-UP SLIDES

Recreating Vehicle Contextual Information

Developing workflow to process large amounts of data

Segmenting Data into Driving Regimes for Driver Model Calibration

Acceleration

Cruise

Stop

2D Kernel Density Plots

Example of Calibration Based on Real-World Data

3 step data process

Parameter extraction

Parameter calibration

