

Proudly Operated by Battelle Since 1965

Room-temperature Stamping of High-Strength Aluminum Alloys

AASHISH ROHATGI aashish.rohatgi@pnnl.gov Tarang Mungole, Ayoub Soulami, Elizabeth Stephens Pacific Northwest National Laboratory

DOE-AMR 2019 Washington, D.C.

June 13, 2019

Project ID # mat126

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: 10/2016 (FY17)
- Finish: 09/2019 (FY19)
- % Complete (scope): ~60%

Budget

- Total project funding
 - DOE: \$ 1M
 - Industry cost share: 30%
- Funding since inception: \$ 1M
- Future funds anticipated: 0

Barriers

- <u>Strength</u>: Develop process for stamping high-strength aluminum (AI) for structural applications without degrading its high strength
- Formability: Develop ways to enable sufficient formability of AI to stamp it at room-temperature

Partners

- Magna-Stronach Centre for Innovation (Tier-1)
- General Motors (original equipment manufacturer (OEM))

Relevance/Objective

Proudly Operated by Battelle Since 1965

DOE-VTO

- Long-term objective \rightarrow 50% mass reduction of a vehicle
- 2025 Target → 25% glider mass reduction, relative to comparable 2012 vehicles, at an added cost of no more than \$5/lb weight saved

USDRIVE

- Aluminum components offer potential overall weight reduction of 40-60% when replacing cast iron/steel
- Methods to improve the formability of high-strength AI alloys (>600 MPa), to values equivalent to steel, are a high priority research need

Project objective

- Develop thermo-mechanical approaches to enable room-temperature stamping of highstrength (7xxx) Al alloys
- Challenges
 - High-strength AI alloys do not have sufficient formability to be stamped at roomtemperature
 - Warm/hot stamping is costly and may require post-forming heat-treatments to regain the high-strength

Approach

Proudly Operated by **Battelle** Since 1965

Task Name	FY 2017				FY 2018				FY 2019			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1 Component identification	G											
Task 2 Strengthening potential of W- temper 7xxx Al			M	e 11	5							
Task 3 Constitutive relations			Price	npin	onsi	G						
Task 4 Stamping simulations			Sim	ulac				ce III		vir	B	
Task 5 Integrate microstructure and mechanical properties models							phi In	program	ral M Fab	odem	nl	
Task 6 Fabricate prototype						11	Nicros	totyf	e'		Μ	
Task 7 Characterize prototype						6	8 Pr					

- Gate 1 (FY17-Q1): Potential component identification
- Milestone (FY17-Q3): Forming limit diagram (FLD) determination
- Gate 2 (FY18-Q2): Stamping simulations predict that the component can be stamped at roomtemperature
- Milestone (FY19-Q3): Determine hardness distribution over the as-stamped component

Proudly Oberated by Baffelle Since 1965

Technical Accomplishments and Progress

- An in-production hot-stamped steel side-impact beam was scanned to create a 3-dimensional computer-aided design (CAD) model and provide an initial design for the target AI side-impact beam
- Emulation of in-production design provides a suitable and realistic initial target design for prototype fabrication

Technical Accomplishments and Progress

Mechanical testing was completed and material cards developed that were used by the tier-1 partner to perform stamping simulations of AI 7075

Technical Accomplishments and Progress

Precipitates/Precipitation Strengthening in AA7075

- Saturated solid solution \rightarrow GP-zones (coherent) $\rightarrow \eta'$ (MgZn₂) $\rightarrow \eta$ (incoherent)
- Precipitate (ppt.) strengthening (radius, r < 3.3. nm) (coherency, atomic-order, chemical effects)
 - Precipitate shearing (sh.)
- Softening (r > 3.3 nm)
 - Precipitate by-passing (bp.)

$$\Delta \sigma^{\rm sh} = \frac{M\pi\mu k^{3/2}}{16} \sqrt{\frac{3f_v r}{\beta b}}$$
$$\Delta \sigma^{\rm bp} = \frac{M\beta\mu b}{r} \sqrt{\frac{6f_v}{\pi}}$$

 $\Delta \sigma$ = Strength increment **M** = Taylor factor μ = Shear modulus k = Proportionality const. (line tension in shear) fv = Volume fraction of ppt. r = Radius of precipitates β = Proportionality const. (line tension during by-passing) **b** = Burger's vector

- Proposal at Advanced Photon Source (APS)
 - Small-angle X-ray scattering (SAXS) \rightarrow precipitate radius (r); volume fraction (f) = f(time)
 - Resolution ~2-3 Å
 - In-situ control (temperature, deformation)
 - Penetration power (sheet thickness = 2.5 mm), better bulk statistics than electron microscopy
- Model: SAXS data as input \rightarrow Predict strengthening/softening regimes \rightarrow Predict component strength as a function of prior thermo-mechanical history March 8, 2019

Responses to Previous Years Reviewers' Comments

Proudly Operated by Battelle Since 1965

- Comment (Approach)
- Sound engineering approach to couple experiments, modeling and stamping simulations before fabrication; good use of actual automotive parts
- 1st Go-No Go gate and weight reduction analyses:
 Listed references in back up slides; analyses
 based on GM and Magna internal research and
 hence, not described publicly
- Targets for mechanical strength: Hardness of stamping within 80% of the T6 temper
- Mechanical testing for qualification; testing of component: 3-point bend test of stamped beam and compare against steel beam; hardness measurement across the stamped beams
- Heavy reliance on modeling and simulations: Stamping simulations were important to give confidence to proceed to Phase III; microstructural modeling is to develop the scientific understanding for interactions between precipitation, strength, and plasticity

Responses to Previous Years Reviewers' Comments

Proudly Operated by Battelle Since 1965

Summary 2018 AMR Results

- Accomplishment and ProgressGood job on LS-Dyna modeling/friction effects
- Underspent and remaining activities (Gantt Chart): The project had somewhat slow start and has since ramped up and project costs are in line with scope of work completed. A post-doc was hired last year to lead the task on integrating microstructural - mechanical properties modeling and in-situ SAXS experiments on the beam-line. A sub-contract is being pursued with Magna for diefabrication and stamping of prototype component
- Collaboration and Coordination
- "Excellent" collaboration between National Lab, tier-1 supplier and automotive OEM

Collaboration and Coordination

Proudly Operated by Battelle Since 1965

- Magna-SCFI (Tier-1)
 - Component selection
 - Component model
 - Stamping simulations
 - Prototype fabrication

General Motors (OEM)

- Internal studies on lightweighting
- Component and AI alloy selection
- Component design
- Die design

Proudly Oberated by Battelle Since 1965

Remaining Challenges and Barriers

- Determine the thermomechanical processing that allows simultaneous formability (at room-temperature) and high strength in the formed component
 - Combined experimental and modeling approach
- High-strength AI can continue to undergo natural aging after forming
 Post-formed mechanical properties need to be evaluated for long-term thermal stability
- Cost-effectiveness of the proposed approach is unknown

Proposed Future Work

Proudly Operated by Battelle Since 1965

- Integrate microstructure and mechanical property models (PNNL)
 - In-situ experiments at APS
 - Models from literature
 - Improved understanding of precipitation/dissolution
- Design stamping die and stamp prototype component (Magna)
 - Purchase of blanks
 - Paint-bake treatment of stamped beams
- Characterize the stamped component (PNNL and Magna)
 - 3-point bend test
 - Hardness measurements

Any proposed future work is subject to change based on funding levels

Summary

- Goal is to develop a process to stamp high-strength AI at roomtemperature without a separate precipitation-hardening heat-treatment
- Side-impact beam was identified as the structural component to form out of AA7075 AI alloy, as an alternative to high-strength steels
- PNNL is working with tier-1 supplier and OEM to stamp a prototype sideimpact beam using AA7075 AI
- An integrated experiment and modeling approach is being developed to predict alloy strength under different temper and deformation conditions

Proudly Operated by Battelle Since 1965

Technical Backup Slides

AASHISH ROHATGI aashish.rohatgi@pnnl.gov

Tarang Mungole, Ayoub Soulami, Elizabeth Stephens Pacific Northwest National Laboratory DOE-AMR 2019, Washington, D.C.

Project ID # mat126

March 8, 2019 **14**

Approach

Phase I (3 months)

- Task 1: Identify 3-5 potential stamped sheet components
- Gate 1: Demonstrate potential for sufficient return on (DOE) investment and the potential for commercialization to replace high-strength steel with high-strength AI

Phase II (15 months)

- Task 2: Determine strengthening potential of W temper formed 7xxx AI alloys
- Task 3: Determine constitutive relations for selected AI alloys
- Task 4: Perform stamping simulation for the selected prototype structural component
- Gate 2: Stamping simulations that predict with confidence that the selected component can be stamped in at least one 7xxx Al alloy-temper combination at room-temperature

Phase III (18 months)

- Task 5: Integrate microstructure and mechanical property models for the selected AI alloys
- Task 6: Fabricate prototype component
- Task 7: Characterization of prototype component

Example of Prior Literature Reviewed

- An Assessment of Mass Reduction Opportunities for a 2017 2020 Model Year Vehicle Program. Lotus Engineering Inc. Submitted to: The International Council on Clean Transportation. March 2010. Accessed on 1st Dec. 2016 from http://altairenlighten.com/wp-content/uploads/2016/03/Mass-Reduction-Opportunities-for-a-2017-2020-Model-Year-Vehicle-Program.pdf
- 2. Lutsey, N., 2010. Review of technical literature and trends related to automobile mass-reduction technology. Institute of Transportation Studies, University of California, Davis. UCD-ITS-RR-10-10. http://pubs.its.ucdavis.edu/publication_detail.php?id=1390
- 3. Skszek, T., Zaluzec, M., Conklin, J., and Wagner, D., "MMLV: Project Overview," SAE Technical Paper 2015-01-0407, 2015, doi:10.4271/2015-01-0407.
- 4. Plourde, L., Azzouz, M., Wallace, J., and Chellman, M., "MMLV: Door Design and Component Testing," SAE Technical Paper 2015-01-0409, 2015, doi:10.4271/2015-01-0409.
- 5. Kearns, J., Park, S., Sabo, J., and Milacic, D., "MMLV: Automatic Transmission Lightweighting," SAE Technical Paper 2015-01-1240, 2015, doi:10.4271/2015-01-1240.
- 6. <u>https://www.amag.at/fileadmin/user_upload/amag/Downloads/AluReport/EN/AR-2014-3-EN-S14-15-.pdf.</u> <u>Accessed 29th Nov. 2016</u>.
- Reaburn, R., "Ultra-light Door Design," presentation given at the DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, Washington, D.C., 2017. <u>https://energy.gov/sites/prod/files/2017/06/f35/lm120_skszek_2017_o.pdf</u>
- 8. Kumar, S.D., Amjith, T.R., Anjaneyulu, C., Forming Limit Diagram Generation of Aluminum Alloy AA2014 Using Nakazima Test Simulation Tool, In Procedia Technology, Volume 24, 2016, Pages 386-393.
- 9. Părăianu L., Comşa D., Gracio J., Banabic D. (2007) Modelling of the Forming Limit Diagrams Using the Finite Element Method. In: Advanced Methods in Material Forming. Springer, Berlin, Heidelberg.