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Overview

Timeline
Start: October 2012
Finish: September 2013

Budget
Total project funding
— 100% DOE
FY2013: S115K (Voltage Fade)

Barriers

= Development of a PHEV and EV batteries
that meet or exceed DOE/USABC goals.

— Calculating total battery mass, volume,
& cost from individual components

— Predicting methods & materials that
enable manufacturers to reach goals

Partners (Collaborators)
= ANL Voltage Fade Team
= ANL Cell Fabrication Facility

DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac
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Project Objectives - Relevance

e Quantify materials level performance requirements of Li- and Mn-
rich layered transition metal oxide cathodes (LMR-NMC) necessary
to significantly improve upon existing Li-ion cathodes (pack level
cost and energy density)

* Document barriers that need to be overcome to achieve the higher
level of performance

Milestones

* Map out performance and cost space for generic chemistries (Dec
2012) complete

e [nitial assessment of LMR-NMC capacity and average voltage to
outperform existing materials(Dec 2012) complete

* Finalize LMR-NMC material level properties required to meet DOE
PHEV40 and EV goals (July 2013) on target

* Document state-of-the-art performance and barriers still remaining
to overcome for LMR-NMC (Sept 2013) on target

DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac




Approach

Utilize BatPaC: peer-reviewed,
transparent, publicly available bottom-up
Li-ion performance and cost model

— Map out performance and cost space

— Sensitivity of material properties

— Quantified targets for material

Leverage Argonne Voltage Fade team and
published literature for state-of-the-art
understanding of LMR-NMC materials

Interact with OEMs and cell suppliers to
understand their view of barriers at
materials, cell, and system level

DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac

BatPaC v2.1 available from
www.cse.anl.gov/batpac
Over 600 unique user downloads
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Major Accomplishments and Technical Progress
= Mapped out performance and cost space

= Created first draft of positive electrode material level targets
= Detailed barriers impeding implementation
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N
BatPaC approach to understanding cost & energy

= Designs Li-ion battery and required manufacturing facility based
on user defined performance specifications for an assumed cell,
module, and pack format
— Power, energy, efficiency, cell chemistry, production volume

= (Calculates the total cost to original equipment manufacturer
(OEM) for the battery pack produced in the year 2020

— Not modeling the cost of today’s batteries but those produced by
successful companies operating in 2020

— Some advances have been assumed while most processes are similar
to well-established high-volume manufacturing practices

= Efficient calculations completed in fractions of a second

DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac
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BatPaC calculation overview

Iterate Over Governing Eqgs.
& Key Design Constraints

* Cell, module, & pack format
* Maximum electrode thickness

* Fraction of OCV at rated power

A
» Pack specifications
- Power and energy (range)
- Number of cells
 Cell Chemistry
- Area-specific impedance (ASI)
- Reversible capacity C/3
- OCV as function of SOC
- Physical properties

~
Battery Pack

Components
, |+ Volume
* Mass
* Materials

* Heat generation
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Mapping out performance and cost space

= Use EV150 battery, lower P/E ratio is less sensitive to ASI
— Results will be more broadly applicable to other chemistries
— 40 kWh,,,, 100 kW, 360 V @ 100k/yr
= Materials properties default to NMC333/Gr when not overridden
— Density, electrode porosity, ASI, etc
= Active material costs assumed in contour plots:
— Positive $30/kg; Negative $20/kg
= Advanced Si composite anode assumed for capacity-voltage plots
— 50% electrolyte volume fraction in discharged state
— 1300 mAh/g; 80:10:10 active:carbon:binder
— Prelithiated to achieve 85% 15t cycle efficiency

DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac
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Constant voltage and ASI contour plots

= Steepest decent by increasing both electrode capacities

= Volumetric drives energy density (but active materials are S/kg)
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Positive voltage and capacity contour vs Si anode

= Diminishing returns for improving a single electrode capacity
" |ncreasing cell voltage key to improve performance and cost

= Contour plot shows transition between two regions
o <500 mAh/cm3 (~210 mAh/g): capacity has stronger sensitivity
o > 600 mAh/cm?3 (~¥250 mAh/g): voltage has stronger sensitivity
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Contour plots takeaways

= Specific energy and cost strongly inversely correlated

= Diminishing returns for improving a single electrode capacity
" |ncreasing cell voltage key to improve performance and cost
= Volumetric capacity is a driver

— Volume fraction and density of active material are important
— Related to tap/tapped density (not a rigorous correlation)
= |nflection point from capacity to voltage impact is driven by

electrode thickness limitation (100 microns in BatPaC)

— Tortuous Li* transport in electrolyte

— Life and cold temperature performance

— Manufacturing reliability and quality

— All complex phenomena not well understood!

= We are limited to the materials that we have: e.qg. LMR-NMC

DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac
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LMR-NMC electrodes promise to lower cost

= |nitial LMR-NMC analysis from contour plots
= Ranges for predicted LMR-NMC capacity and OCVs

= |gnore difference in active material price
— NMC333 vs LMR-NMC: $30-40/kg vs $20-25/kg
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Promise of LMR-NMC positive electrodes

= xLi,MnO;-(1-x)LiMO, materials are under development
worldwide to increase energy density and lower cost

— Hypothesis: Li,MnO; increases the stability of the layered structure
— Thus, allowing access to higher reversible capacities

= High capacity shows synergy with advanced Li-ion negative
= Rich in manganese lowering S/kg
= High in energy lowering S/kWh

= Safety performance may be similar to NMC333*
*Zonghai Chen et al. (Argonne) Poster ES035

= Some laboratory and industrial developers have demonstrated
exciting progress to date

DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac
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Tailor Li,MnO; content to optimize Wh/kg

Li,MnO, LiMO, (M = Mn, Ni, Co) The characteristic LiMng
= XLi,MNO,-(1-x)LiNig sMN3 505 . oo — e AR
— x=0 f:ctihl_eidra
e 160 mAh/g, 3.78 U, vs Li
e 605 Wh/kg vs Li 50 —
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DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac Jason Croy et al (Argonne)
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Materials metrics for LMR-NMC: capacity vs voltage

= LMR-NMC must outperform the next best available material

= Assume this is a high performance NMC441*
— Lij 05(NizgMn,,6C04/9)g 950, Or 0.1Li,MnO3:0.9LiNi 49,Mng 347,C04 1540,
— Peak charge of 4.4 V vs Li, 175 mAh/g at C/3, U, . = 3.90 V vs Li

— Estimated price of positive active material
e $25-30/kg for NMC 441 5

e $20-25/kg for LMR-NMC g ol T

= (/3 Capacity and OCV targets: ‘: NMC441 vs Adv Si
— 225mAh/gand U, >3.55V vs Li EE T \'\-.,___ - |
- 250 mAh/gand U, >3.45Vvsli & w0 < _ T~ -
- 275mAh/gand U, >3.35Vsli 3 | s “‘"R'”“’lc ZE g
= 100 mV = 25 mAh/g g el TN2 0T
= Average OCVs should be ;°:, or ““‘-:.j_“- L T2
considered end of life values to g . "‘--.'2?2_'
account for voltage fade ° T

Average positive electrode OCV, V vs Li
DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac

*S.-H. Kang et al. J. Electrochem. Soc. 158 (8) A936 (2011) 15



LMR-NMC reduces positive electrode cost, >$720

= Materials cost breakdown comparison

— Assumes 225 mAh/g at C/3, 33% electrode porosity
— Average LMR-NMC OCV, U, of 3.76 V vs Li

40 kWh_ , 100 kW 360 V

Tot?

I NMC441 vs Adv Si
P LMR-NMC vs Adv Si
LMR-NMC properties:

225 mAh/g; U =3.76 V vs Li
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DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac
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Challenges for LMR-NMC positive electrodes

= Voltage fade and hysteresis
— Structural change in bulk of material
— Lowers energy density and complicates SOC management
= Oxide surface reactions during first charge
— Possibly related to high ASI at low SOC and TM ion dissolution
— Mitigation attempts with coatings and additives may help
= Low rate capability
— Good enough for EVs, but challenging for low mile PHEVs (High P/E)
= Volumetric capacity

— Lower tap density: higher Li content and need for smaller particle size

= Systems level concern: Wide voltage window, especially with Si,
may require DC/DC convertor to boost voltage

DOE-EERE Vehicle Technologies Program — BatPaC available from www.cse.anl.gov/batpac
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Future Work

* Finalize LMR-NMC material levels properties
* With and without an advanced negative electrode
* EV case (new USABC goals this summer)
* PHEVA4O0 case: also quantify C/1 energy and ASI at rated power

* Document SOA performance and barriers that may prevent

commercial acceptance
* Initial performance
e Life and safety performance
* Low-temperature performance
e System level SOC and power management issues

Vehicle Technologies Program
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Summary of promise and challenges of LMR-NMC

" |ntermediate Li,MnO; content may prove best performers
— Trade-off between voltage and capacity

— Contour plots teach
e <500 mAh/cm3 (~210 mAh/g): capacity has stronger sensitivity
e > 600 mAh/cm3 (~250 mAh/g): voltage has stronger sensitivity

= LMR-NMC positive electrodes must outperform the next best
available material: high performance, low cobalt metal oxides
= Many barriers still exist:
— Impedance and life issues see significant improvements
— Voltage fade phenomenon is challenging
— Achieving high volumetric capacity requires additional engineering

Vehicle Technologies Program
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