Electrodeposition for Low-Cost, Water-Based Electrode Manufacturing

Vehicles Technology Office 2019 Annual Merit Review

Project ID: BAT263

Stuart Hellring (PI) June 11, 2019

Contributors: PPG – Landon Oakes, Haley Orler, Ryan Plazio, Adam Crowe ORNL - David Wood III Navitas – Mike Wixom, Pu Zhang

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: January 1st, 2016
- Project end date: June 30th, 2019
- 90% complete

Barriers

- High material processing cost
- High manufacturing cost
- Toxic material exposure

Budget

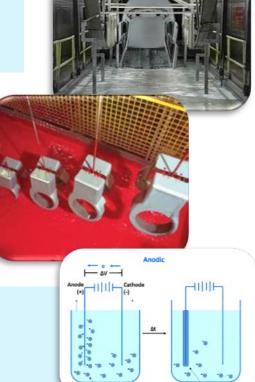
- Total project funding:\$3,999,034
 - DOE share: \$1,399,275
 - FFRDC: \$1,600,000
 - Contractor share: \$999,759
- Project is fully funded.
- Funding for FY 2017: \$762,346
- Funding for FY 2018: \$826,415

Collaborating Partners

- Metokote (now PPG)
 - Role: Roll-to-roll eCoat design and installation
 - Project lead: Dennis Siefer
- Navitas System
 - Role: Full-cell build and testing
 - Project lead: Mike Wixom
- Oak Ridge National Lab
 - Role: Electrode processing and anode support
 - Project lead: David Wood III
- Argonne National Lab
 - Role: CAD synthesis
 - Project lead: Greg Krumdick

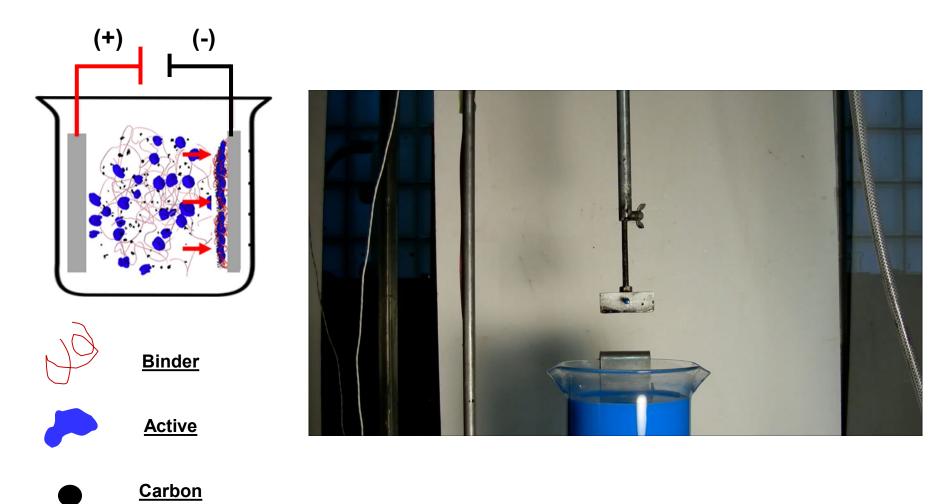
Relevance

Overall Objectives

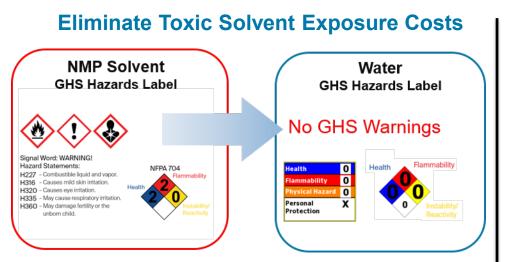

- Reduce electrode manufacturing cost using electrocoat processing.
- Improve the environmental friendliness with water-based battery processing.

Objectives this Period

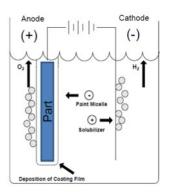
- Design and install R2R eCoat pilot process
- Compare R2R plot application to benchtop eCoat performance
- Modify process design and electrode formulation to optimize.
- Validate full-cell, pouch cell battery performance.


Impact

- Successful production of electrocoated cathodes to:
 - Reduce cell manufacturing cost.
 - Enable waterborne manufacturing.
 - Eliminate the need for using toxic solvents.
 - Facilitate automotive OEM and consumer acceptance of electric vehicles.
 - Allow for the creation of the next generation of US-based advanced battery manufacturing.



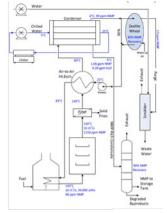
<u>Approach</u>: Electrodeposition for Water-Based Battery Electrode Manufacturing



Approach: Use Electrocoat to Overcome Current Process Barriers

Integrated with other VTO W/B Projects at ORNL

Lower Drying Costs


Wet Film going into oven:

- High solids
- Low solvent
- Low VOC
- No LEL limitation

Eliminate Costly Toxic Solvent Recovery

NMP Recovery Process Shabbir Ahmed, ANL 2015 VTO AMR ES228

Eliminate 2-Coat / 2-Cure Coating Process

- · Simultaneously coat both sides
- One pass through oven
- Deposition controls uniformity
- Particle assembly controls porosity

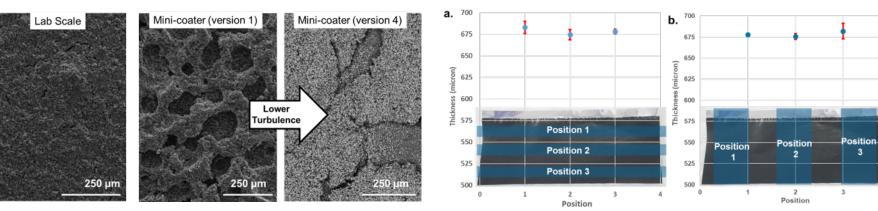
Advancing Electrodeposition from the Benchtop to a Continuous Roll-to-Roll Pilot Scale Coating System

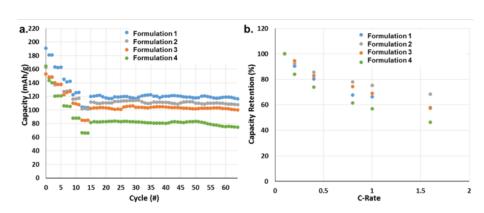
Benchtop

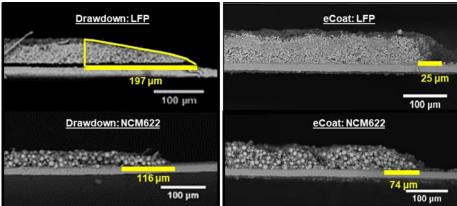
Challenges

- Pilot Coater Design
- Pilot Coater Reformulation
- Electrode Coating Quality
- Cell Performance

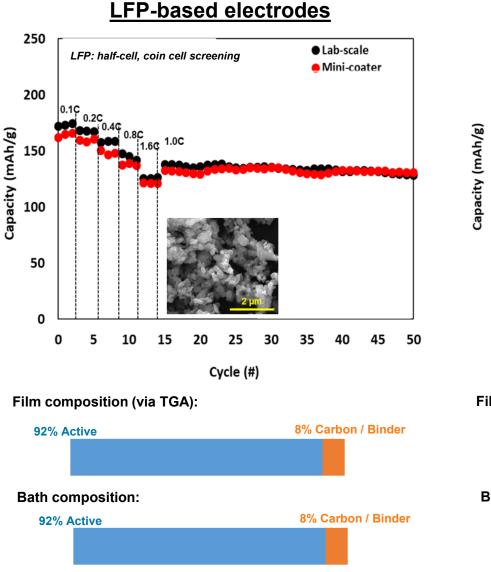
Pilot System

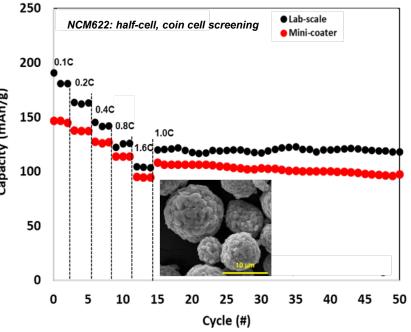


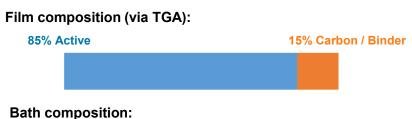



Challenges Transitioning from Benchtop to Roll-to-Roll Pilot Coating **Bath Uniformity**

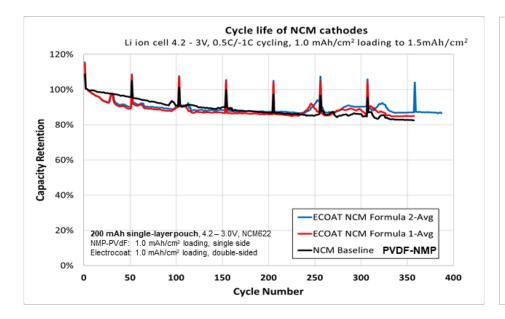
Formulation Chemistry




Edge Profile Control



Cathode Active Particle Size Influences Deposition Selectivity


NCM-based electrodes



92% Active 8% Carbon / Binder

Decreased Active Mass Loading Results in Lower Measured Gravimetric Capacities

Initial Discharge Capacities (mAh/g)

ECOAT NCM Formula 2: 138ECOAT NCM Formula 1: 138NCM Baseline:171

Summary

- Bench scale cathodes are coated with acceptable uniformity and energy density.
- Pilot coater differs from bench scale largely due to challenges from bath uniformity.
- Changes in process design and formulation chemistry can overcome challenges.
- Pilot scale mini-coater operational and cathode coated foil are being evaluated.

Proposed Future Research

- Pilot coater redesign
- eCoat for other battery components
- Improved downstream curing

Any proposed future work is subject to change based on funding levels

Technical Back-up Slides

Milestones

Date	Milestones and Go/No-go	Status
June 2017	Milestone: Formulation / application parameters are optimized sufficient to produce an electrode with an energy density of 2.5-3.0 mAh/cm ²	Complete
December 2017	Milestone: Pouch cells > 0.2 Ah are tested	Complete
July 2018	Milestone: Mini-coater is designed, built, and prepared for operation.	Complete
December 2017	Milestone: BatPac model updated and adjusted cost estimate obtained	Complete
December 2017	Go/No-go: Demonstrate ability to produce kg quantities of the active material.	Complete
December 2017	Go/No-go: Electrodes will either have reached a loading density of 2.0 mAh/cm ² or a clear path to achieve metric that will be identified.	Complete
December 2018	Milestone: Electrodes are produced on the mini-coater that can be used for cell deliverables.	Complete
January 2018	Milestone: 12 baseline and 12 electrocoated cathodes will be evaluated in double layer pouch cells	Complete
May 2019	Milestone: 35 electrocoat and 12 baseline prismatic cells >1 Ah will be assembled and tested.18 optimized cells will be delivered to DOE for evaluation	On track
September 2019	Milestone: Root cause failure mechanisms identified	On track

