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Overview

• Project start date: FY 2019
• Project end date: FY 2023
• Percent complete: 30%

Budget
• Total project funding

o DOE share: $700K
• Funding for FY 2019: $350K
• Funding for FY 2020: $350K

• Size and weight
• Cost
• Performance and lifetime

Timeline Barriers

• John Deere
• Dielectric fluid manufacturers
• Oak Ridge National Laboratory (ORNL)
• Georgia Tech University (GT)
• Project Lead – National Renewable 

Energy Laboratory (NREL)

Partners
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Relevance

• Thermal management is essential to increase power density and reliability.

• Objective: Develop thermal management techniques to enable achieving the 
(year 2025) DOE 100 kW/L power density target.
o Challenge is to create a thermal solution that allows for packaging high temperature (250°C) and high heat flux 

wide-bandgap (WBG) devices next to capacitors that typically cannot exceed 100°C.

From 2017 Electrical and Electronics Technical Team RoadmapAIPM: advanced integrated 
power module

Passives
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Milestones/Approach

Date Description of Milestone or Go/No-Go Decision

March 2020 (complete) Milestone: Completed experiments to characterize the thermal performance of the 
dielectric-fluid-based heat exchangers (single-side cooled). Evaluated the effects of the 
dielectric fluid temperature and flow rate on thermal performance and pumping power.

June 2020 
(in progress)

Design a double-side cooled, dielectric fluid heat exchanger to improve performance 
(beyond the single-side cooled design).

September 2020
(in progress)

Conduct experiments to measure the thermal performance and pumping power of the 
dielectric fluid heat exchanger using other dielectric fluids (AC-100) and automatic 
transmission fluids (ATFs) at various fluid temperatures and flow rates.
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Design the 
cooling 

strategies to 
achieve the 

thermal target

Device 
packaging

Convective 
cooling

Fluid selection

Overall Approach 

Define the 
thermal target 
to achieve 100 

kW/L

Estimated heat load (100 kW WBG inverter): 2,150 W
Maximum device temperature: 250°C

Module and cold plate volume: <240 mL
Volumetric thermal resistance target: <21 cm3·K/W Dielectric-fluid cooling (single-phase heat transfer) 

planar package concept

Thermal strategy to reach a power density of 100 kW/L

Photo Credit: Gilbert Moreno (NREL)
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Thermal Design Approach

• Reduce the total thermal resistance by reducing the 
package thermal resistance. Package resistance 
(~60% to 80% of total) in conventional modules.

• Dielectric fluids enable a package redesign to 
decrease the package resistance (the dominant 
thermal resistance).

• Potential to use ATF or other new driveline fluids 
as the coolants.

HEV: hybrid electric vehicle; EV: electric vehicle; DBC: direct-bond copper
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Thermal Design Approach: Dielectric-Fluid Cooling Concept

Dielectric fluid

Inexpensive dielectric material

MOSFET

Electrical conductor

Electrical conductor

Electrical 
lead

MOSFET: metal–oxide–semiconductor field-effect transistor

Improves thermal performance over conventional 
DBC-based designs

Improved cooling (single-phase heat 
transfer) via jet impingement and finned 
surfaces

Allows for cooling of the bus 
bars/electrical interconnects to 
lower capacitor and gate driver 
temperatures

Eliminates expensive ceramic materials

• Reduced package/conduction resistance to 33% of total thermal resistance using a relatively high convection coefficient (17,300 W/[m2·K])
• Designed single-side and double-side dielectric-fluid cooling concepts.
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Thermal Design Approach: Project Tasks

High heat 
flux heat 

exchanger

1. Identified 
potential dielectric 
fluids (single-phase 

heat transfer)

2. Designed a jet 
impingement, 

dielectric fluid, 
single-side cooling 

system

3. Conducted 
experiments and 
validated model 

(single-side cooled 
system) 4. Modeled 

different fluids to 
compare 

performance at 
different 

temperatures

5. Designing a 
double-side 

cooled, 
dielectric-fluid 
cooling system

Work presented 2019 AMR Current work Enable reaching 100 kW/L power density

Alpha 6, AC-100, and 
ATF fluid properties 

provided in Technical 
Back-Up Slide 

Section
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Conceptual Dielectric Fluid Cooling System 
(Single-Side Cooled Version)

Achieved high thermal performance
• Heat transfer coefficient 17,300 W/(m2·K) at a 

relatively low jet velocity of 0.3 m/s
• 22 mm2·K/W junction-to-fluid thermal 

resistance (per device)

Compact size
• Achieved 120 mL total volume for conceptual 12-device module and 

heat exchanger
• Requires 4.1 L/min total flow rate
• Predict we can dissipate 2.2 kW with 12 devices. Results in a Tj ≈ 

220°C at a heat flux ~716 W/cm2

• Compute 9 cm3·K/W total resistance, outperforms/lower than 
resistance target of 21 cm3·K/W 

Technical 
Accomplishments 
(presented in 2019 
AMR)

Slot jet

5 × 5 × 0.18 mm silicon carbide (SiC) device

10 mm

4 mm

Planar module, dielectric cooling concept

10 mm

1.75 mm

Conceptual power module with dielectric-fluid cooling system (PROV/19-69. Application No. 
62/927,252). Results using Alpha 6 fluid at Tinlet = 65°C.

Moreno, G. et al., “High-Heat Flux, Dielectric-Fluid Cooling Method for Power Electronics.” PROV/19-69. Application No. 62/927,252.

Image credit: Gilbert Moreno (NREL)

Samsung S9 inlet

outlet
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Experimental Validation: Fabricated the Finned Heat 
Spreaders

Technical 
Accomplishments

As modeled:
16 fins total (per 

device)
thickness = 0.2 mm

height = 4 mm
channels = 0.43 mm

Measured:
15 fins total (per 

device)
thickness ≈ 0.25 mm

height ≈ 4 mm
channels ≈ 0.4 mm

Modeled

Actual

10 mm

Finned heat spreaders mounted to plastic housing (PROV/19-
69. Application No. 62/927,252). Twelve finned areas are 

directly above each device.

10 × 10 mm finned area

Image credit: Gilbert Moreno (NREL)

Image credit: Gilbert Moreno (NREL)

Moreno, G. et al., “High-Heat Flux, Dielectric-Fluid Cooling Method for Power Electronics.” PROV/19-69. Application No. 62/927,252.
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Experimental Validation: Completed the Heater Design
Technical 
Accomplishments

• Designed a cartridge heater system to simulate the 
12 SiC devices. 

• Heater blocks are soldered to finned heat spreaders.
• Measured the heat exchanger (case-to-fluid) thermal 

resistance. 

insulation

heater 
block

finned 
spreader

two 
thermocouples 
per heater

heater 
block

33 mm

A

A

Heat

Heat
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 25 𝑚𝑚𝑚𝑚2

𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑅𝑅𝑅𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐻𝐻𝐴𝐴𝐴𝐴𝐻𝐻𝑝𝑝𝑐𝑐𝑝𝑝 𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑝𝑝, 𝑓𝑓𝑐𝑐𝑑𝑑𝑓𝑓𝑐𝑐𝑐𝑐

jetjet



NREL    |    12

Experimental Validation: Fabricated the Dielectric Fluid Loop
Technical 
Accomplishments

Dielectric fluid loop (schematic provided in Technical Back-Up Slides)

Image credit: Gilbert Moreno (NREL)

• Fabricated a polycarbonate prototype of the 
dielectric-fluid heat exchanger via 3D 
printing (cartridge heaters and insulation 
not shown).

• Completed fabrication of the dielectric fluid 
loop.

• Measured the heat exchanger (case-to-
fluid) thermal resistance at various fluid flow 
rates and temperatures.

cartridge heater power leads 

Image credit: Gilbert Moreno 
(NREL)

heater blocks
inlet

outlet

Fan-cooled heat exchanger

flow meter

reservoir

pump
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Experimental Results and Comparisons with Model

• Obtained a good match between experiments 
and model. 

• Changing fluid temperature has minimal effect 
on thermal resistance but does affect 
pumping power.

• Confirmed the heat exchanger low thermal 
resistance values. Provided confidence in 
model predictions.

4.1 L/min
2 L/min

1 L/min
𝑅𝑅𝑅𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐻𝐻𝐴𝐴𝐴𝐴𝐻𝐻𝑝𝑝𝑐𝑐𝑝𝑝 𝑓𝑓𝑐𝑐𝑑𝑑𝑓𝑓𝑐𝑐𝑐𝑐

Model: inverter-scale, conjugate heat transfer CFD

Pinlet

Poutlet

Pumping power = Flow rate × (Pinlet – Poutlet )

Technical 
Accomplishments

CFD: computation fluid dynamics 
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Compared Fluid Performance at Different Fluid Temperatures

• Modeled performance of Alpha 6, AC-100, and ATF 
at 70°C and −40°C fluid temperatures at different 
flow rates (1 L/min to 6 L/min).

• Changing fluids and varying temperatures has a 
minor effect on thermal resistance but has a big 
effect on pumping power when compared at the 
same flow rates.

• Predict ATF performance to be similar to Alpha 6 
because they have similar properties.

Data at all temperatures, including 30°C, are provided in Technical Back-Up 
Slides. The first data points correspond to 1 L/min, the last data points 

correspond to 6 L/min for all curves shown.

Model: inverter-scale, 
conjugate heat transfer CFD
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Accomplishments



NREL    |    15

Compared Performance with Existing Automotive Systems

• Predict that all dielectric fluid cases provide lower 
thermal resistance compared with 2014 Accord HEV 
and 2015 BMWi3 EV. 

• AC-100 may be the best option due to its lower 
pumping power. At −40°C, it’s predicted to have a 
lower pumping power and thermal resistance 
compared with 2014 Accord HEV and 2015 
BMWi3 EV.

• Results indicate that higher viscosities at low 
temperatures may not be a problem if the 
correct fluid is chosen and coupled with a low 
pressure-drop system.

Data at all temperatures, including 30°C, are provided in Technical Back-Up 
Slides. The first data points correspond to 1 L/min, the last data points 

correspond to 6 L/min for all curves shown.
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AC-100  70°C AC-100 -40°C

ATF  70°C ATF  -40°C

6 L/min

1 L/min

2014 Accord HEV 
(WEG: 10 L/min, 65°C)

2015 BMWi3 EV 
(WEG: 10 L/min, 

65°C)

Model: inverter-scale, 
conjugate heat transfer CFD

Technical 
Accomplishments
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Dielectric Fluid, Double-Side Cooled Module

• Double-side cooled module design similar to
2013 Camry HEV module.

• Predict 163°C maximum junction 
temperatures at 716 W/cm2 heat flux using 
HTCs from single-side concept; ~57°C 
temperature decrease compared to single-side 
concept.

• Allows for T max. junction <175°C due to double-
side cooled configuration.

50 mm

module

ceramic

2013 Camry HEV 
module

Image credit: Gilbert 
Moreno (NREL)

Conceptual dielectric fluid, double-
side cooled module 

25 mm

5 × 5 mm 
device

electrically active heat spreader

spacers
electrically active heat spreader

Device heat flux: 716 W/cm2

HTC (both sides): 17,300 W/m2-K

HTC

HTC

Technical 
Accomplishments

HTC: heat transfer coefficient
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Summary of Results

Single-side cooled, 
dielectric fluid concept

Double-side cooled, 
dielectric fluid concept

Target

Maximum junction 
temperature [°C] 220 [1] 163 [1] <250 [2]

Total heat dissipated [W]
2,150 2,150 2,150

Heat flux per device 
[W/cm2], maximum 716 716 N/A

Volumetric thermal 
resistance 
[cm3·K/W]

9 11 21

Pumping power [W] 0.15 [1] 0.21 [1] N/A

Technical 
Accomplishments

Developed dielectric fluid-based cooling strategies that we predict can enable reaching 100 kW/L power density.

[1] Computed/measured at 4 L/min and 70°C Alpha 6 inlet temperature.
[2] USDRIVE, 2017, Electrical and Electronics Technical Team Roadmap.
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Responses to Previous Year Reviewers’ Comments

• Reviewer comment: The reviewer said that the approach is fine, but the assumptions are not. 
250 degrees Celsius (°C) for the die temperature is not feasible. The die may be able to 
handle this temp, but the bonding or other design parameters limit the temperature to only a 
few degrees above IGBT (insulated-gate bipolar transistor). 

o Response: We agree that the packaging of the high-temperature devices is the main 
issue. We have designed a double-side cooled approach that we predict limits the device 
temperatures <175°C while meeting the thermal target.

• Reviewer comment: The reviewer said the technical accomplishments to date are 
satisfactory. In the evaluation of the cooling concepts, considerations on the weight should be 
included. Also, comparison with state-of-the art solutions should be updated to more recent 
results. 

o Response: We agree with the reviewer comments. We have developed concepts that are 
significantly smaller than current systems (~¼ size of 2015 BMWi3 EV) and can be made 
using a lightweight (plastic) manifold, and thus the weight should also be reduced. We 
have also added thermal resistance and pumping power comparisons to a more recent 
automotive system (2015 BMWi3 EV). 
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Collaboration and Coordination

• John Deere (industry): Two-phase cooling for high-packaging-
density planar inverter (CRADA)

• Georgia Tech University: Collaborate to evaluate and develop 
advanced cooling technologies (two-phase and inter-device 
cooling)

• Elementum3D (industry): Provide 3D-printed metal parts to 
evaluate new heat exchanger concepts

• ORNL

• Dielectric fluid manufacturers

CRADA: cooperative research and development agreement
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Remaining Challenges and Barriers

• Creating a reliable, leak-free cooling system: main challenge is sealing the electrical leads 
that penetrate through the power module.

o Developed a concept (ROI-20-72 Compact Dielectric Fluid Manifold for Multiple Double-
Side Cooling Configurations) that may allow for sealing the modules and cooling of 
electrical interconnections.

• Pumping power requirements at low temperatures due to higher fluid viscosity.
o Results indicate that higher viscosities at low temperatures may not be a problem if the 

correct fluid is chosen and coupled with a low pressure-drop system.

• Fluid compatibility with power electronics materials: selected fluids should be compatible 
with electronics materials, but experiments should be conducted to verify compatibility.

• Long-term reliability questions of the dielectric fluid under power electronics operating 
conditions.

• Industry adoption of new (nonconventional) technology.
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Proposed Future Research

FY 2020
• Complete design of the double-side cooled, dielectric fluid concept.
• Conduct experiments with AC-100 and ATF at various fluid temperatures and flow 

rates.
• Collaborate with Georgia Tech to develop the advanced cooling technologies.

FY 2021 and beyond
• Fabricate a prototype of the double-side cooled concept.
• Experimental demonstration/validation of the double-side dielectric fluid concept.
• Evaluate the long-term reliability of the dielectric fluids.
• Collaborate with Georgia Tech to develop the advanced cooling technologies.

Any proposed future work is subject to change based on funding levels
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Summary

Relevance
• Effective thermal management is essential to achieve the year 2025 DOE power density (100 kW/L) and cost ($2.7/kW) 

targets.

Approach/Strategy
• Define a thermal target required to achieve the 100 kW/L power density.
• Design dielectric-fluid cooling strategies to meet the thermal target and enable high power density.

Technical Accomplishments
• Conducted experiments to measured the dielectric-fluid heat exchanger (case-to-fluid) thermal resistance at various fluid 

flow rates and temperatures. Obtained a good match between experiments and model. Results confirm that the single-
side heat exchanger concept can meet the thermal target. 

• Identified AC-100 as a good option due to its lower pumping power. At −40°C, it’s predicted to have a lower pumping 
power and lower thermal resistance compared with 2014 Accord HEV and 2015 BMWi3 EV.

• Designing a double-side, dielectric fluid-cooled heat exchanger. Predict that this concept can dissipate heat fluxes >700 
W/cm2 (per device) while maintaining junction <175°C. This concept is also predicted to meet the thermal target. 

• Developed dielectric fluid-based cooling strategies that we predict can enable reaching 100 kW/L power density.

Collaborations
• John Deere, Georgia Tech University, Elementum3D, dielectric coolant manufacturers, ORNL
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Dielectric Fluid Properties

• Selected synthetic hydrocarbons that are used in electronics cooling 
(single-phase) applications: 
o Alpha 6: DSI Ventures 
o AmpCool (AC)-100: Engineered Fluids

• Potential to use automatic transmission fluid (ATF) to decrease cost, use fluid already qualified for automotive 
use, enable motor–inverter integration.

• Challenge is to create a cooling system with high thermal performance using fluids with relatively inferior heat-
transfer properties as compared to water-ethylene glycol (WEG).

Fluid
(properties at 

70°C)

Thermal 
conductivity 

[W/(m·K)]

Specific heat 
[J/(kg·K)]

Density 
[kg/m3]

Viscosity 
[Pa·s]

Flash 
point [°C]

Pour point 
[°C]

Alpha 6 1 0.14 2,308 792 0.0091 246 −57

AC-100 1 0.13 2,326 761 0.0025 180 −55

ATF 2 0.16 2,131 836 0.012 199 −45

WEG (50/50) 3 0.42 3,513 1,034 0.0013 >121 4 −36 5 (freeze 
point)

1 Communications with vendor (DSI Ventures or Engineered Fluids)
2 Kemp, Steven P. and James L. Linden. 1990. “Physical and Chemical Properties of a Typical Automatic Transmission Fluid.” SAE Technical paper.
3 Alshamani, Kaisar. 2003. “Equations for Physical Properties of Automotive Coolants.” SAE Technical Paper.
4 “Safety Data Sheet ZEREX HD Nitrile Free Extended Life 50/50 Antifreeze Coolant.” Valvoline. Accessed April 1, 2019. 
https://sds.valvoline.com/valvoline-sds/sds/materialDocumentResults.faces.
5 “Product Information: Valvoline ZEREX G05 Antifreeze Coolant.” 2018. US_Val_ZXG05_AFC_HD_EN.Pdf. 
https://sharena21.springcm.com/Public/Document/18452/f93a8057-fe75-e711-9c10-ac162d889bd3/c264d227-0dbd-e711-9c12-ac162d889bd1.

https://sds.valvoline.com/valvoline-sds/sds/materialDocumentResults.faces
https://sharena21.springcm.com/Public/Document/18452/f93a8057-fe75-e711-9c10-ac162d889bd3/c264d227-0dbd-e711-9c12-ac162d889bd1
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Dielectric Fluid Flow Loop
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Effect of Fluid Temperature: CFD Model Results for 
Single-Side Cooled Concept

• Different fluids provide similar 
thermal resistance performance 
when compared at same flow 
rate.

• Changing fluid temperature has 
minimal effect on thermal 
resistance but has a big effect 
on pumping power.
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Dielectric Fluid, Double-Side Cooled Heat Exchanger 
Pressure Drop versus Flow Rate Performance

• Total volume for the heat exchanger 
and conceptual modules is 240 mL.

• Computed pressure drop versus 
flow rate characteristics for series 
and parallel flow configurations. 
Pressure drop is <2 psi for all flow 
rates.

240 mL total volume 
(ROI-20-72)

NREL Record-of-invention (ROI)-20-72 Compact Dielectric Fluid Manifold for Multiple Double-Side Cooling Configurations
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