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Overview

• Project start date: FY 2019
• Project end date: FY 2021
• Percent complete: 15%

Budget
• Total project funding

– DOE share: $350K
• Funding for FY 2019: $350K

• Size and weight
• Cost
• Performance and lifetime

Timeline Barriers

• John Deere
• Elementum3D
• Dielectric fluid manufacturers
• Oak Ridge National Laboratory 

(ORNL)
• Project Lead – National Renewable 

Energy Laboratory

Partners
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Relevance

• Thermal management is essential to increase power density 
and reliability.

• Objective: Develop thermal management techniques to 
enable achieving the (year 2025) DOE 100 kW/L power 
density target.
– Challenge is to create a thermal solution that allows for packaging high 

temperature (250°C) and high heat flux wide-bandgap (WBG) devices next to 
capacitors that typically cannot exceed 100°C.

From 2017 Electrical and Electronics Technical Team Roadmap
AIPM: advanced integrated power module
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Resources

Modeling tools 
- Finite element analysis (FEA)
- Computational fluid dynamics (CFD)

Experimental equipment
- Dielectric fluid loop
- Water ethylene glycol loop
- T3ster (transient thermal tester)
- Xenon flash

Photo Credit: Doug DeVoto (NREL)
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Milestones / Approach

Date Description of Milestone or Go/No-Go 
Decision

December 2018 
(complete)

Go/No-Go: Develop thermal management design concept(s) and 
potential strategies to enable achieving 100 kW/L power density 
target. Do concepts enable achieving the power density target?

March 2019 
(complete)

Milestone: Conduct experiments to characterize the thermal 
performance of the two-phase cooling system for the John Deere 
inverter (CRADA work).

June 2019 
(in-progress)

Milestone: Conduct experiments to validate the thermal management 
strategy. Evaluate effects of fluid temperature (-40°C to 70°C) and flow 
rate.

September 2019
(in-progress)

Milestone: Create a report to summarize the research results. Submit 
manuscript(s) to journal for potential publication.

CRADA: cooperative research and development agreement
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Design the 
cooling strategies

Device 
packaging

Convective 
cooling

Cooling fluid

Approach

Define the 
thermal target to 
achieve 100 kW/L

Heat load (100 kW inverter): 2,150 W
Maximum device temperature: 250°C

Module and cold plate volume: < 240 mL
Volumetric thermal resistance target:   

21 cm3-K/W
Dielectric cooling (single-phase heat transfer) planar 

package concept

Thermal strategy to reach a power density of 100 kW/L

Photo Credit: Gilbert 
Moreno (NREL)
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Dielectric Cooling Concept
Technical 
Accomplishments

Dielectric fluid

Inexpensive dielectric material

MOSFET

Electrical conductor

Electrical conductor

Electrical 
lead

MOSFET: metal–oxide–semiconductor field-effect transistor

Improved performance over 
conventional direct-bond-copper 
(DBC) based designs

Improved cooling (single-phase) via 
jet impingement and finned surfaces

Cooling of the bus 
bars/electrical 
interconnects to 
lower capacitor and 
gate driver 
temperatures

Eliminates expensive 
ceramic materials
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Dielectric Fluid Selection

• Selected synthetic hydrocarbons that are used in electronics cooling 
(single-phase) applications: 
– Alpha 6: DSI Ventures 
– AmpCool (AC)-100: Engineered Fluids

• Potential to use automatic transmission fluid (ATF) to decrease cost, use fluid 
already qualified for automotive use, enable motor–inverter integration.

• Challenge is to create a cooling system with high thermal performance using 
fluids with relatively inferior heat transfer properties as compared to water-
ethylene glycol (WEG).

Fluid
(properties at 70°C)

Thermal conductivity 
[W/m-K]

Specific heat 
[J/kg-K]

Density 
[kg/m3]

Viscosity 
[Pa-s]

Flash point 
[°C]

Pour point 
[°C]

Alpha 6 1 0.14 2,308 792 0.0091 246 -57

AC-100 1 0.13 2,326 761 0.0025 180 -55

ATF 2 0.16 2,131 836 0.012 199 -45

WEG (50/50) 3 0.42 3,513 1,034 0.0013 > 121 4 -36 5 (freeze point)

Technical 
Accomplishments

1 Communications with vendor (DSI Ventures or Engineered Fluids)
2 Kemp, Steven P., and James L. Linden. 1990. “Physical and Chemical Properties of a Typical Automatic Transmission Fluid.” SAE Technical paper.
3 Alshamani, Kaisar. 2003. “Equations for Physical Properties of Automotive Coolants.” SAE Technical Paper.
4 “Safety Data Sheet ZEREX HD Nitrile Free Extended Life 50/50 Antifreeze Coolant.” Valvoline. Accessed April 1, 2019. https://sds.valvoline.com/valvoline-sds/sds/materialDocumentResults.faces.
5 “Product Information: Valvoline ZEREX G05 Antifreeze Coolant.” 2018. US_Val_ZXG05_AFC_HD_EN.Pdf. 2018. https://sharena21.springcm.com/Public/Document/18452/f93a8057-fe75-e711-9c10-ac162d889bd3/c264d227-0dbd-e711-9c12-ac162d889bd1.

https://sds.valvoline.com/valvoline-sds/sds/materialDocumentResults.faces
https://sharena21.springcm.com/Public/Document/18452/f93a8057-fe75-e711-9c10-ac162d889bd3/c264d227-0dbd-e711-9c12-ac162d889bd1
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Cooling System Design: Modeling Results

Optimized dimensions
• Slot jet (1.75 × 10 mm) 

impinging on fins (0.2 × 4 
× 10 mm) 

Achieved high thermal performance
• Heat transfer coefficient 17,300 

W/m2-K at a relatively low jet 
velocity of 0.3 m/s

• Higher performance possible

Decreased size
• Predict we can dissipate 

2.2 kW with 12 devices.  
Results in a heat flux ~718 
W/cm2 at Tj ≈ 220°C

• 50% lower thermal 
resistance compared to 
2014 Accord Hybrid   
[Accord data taken from 1]

Technical 
Accomplishments

Module temperature 
contours

Slot jet

5 × 5 × 0.18 mm SiC device

10 mm

4 
mm

Planar module, dielectric cooling concept

10 mm

1.75 mm

Results using Alpha 6 fluid at Tinlet = 65°C
1 Moreno, Gilberto, et al. "Evaluation of performance and opportunities for improvements in automotive power electronics systems." 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2016.
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Cooling System Design: Modeling Results

Designed fluid manifold to 
distribute flow to 12 devices. 

• Reduced size: 120 mL total cold 
plate and power module 
volume

• Total flow rate 4.1 Lpm at 0.33 
psi pressure drop

• Reduced pumping power: 
80% lower parasitic power 
compared to 2014 Honda 
Accord Hybrid

Technical 
Accomplishments

94 mm

18 
mm

CAD model of the cold plate with finned heat spreaders

inlet

outlet

Results using Alpha 6 fluid at Tinlet = 65°C CAD: computer-aided design
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Cooling System Design: Modeling Results
Technical 
Accomplishments

Flow distribution through 12 slot jets

94 mm

18 
mm

inlet

outlet

Results using Alpha 6 fluid at Tinlet = 65°C

Designed fluid manifold to distribute flow to 12 devices 

• Predict +/- 5% flow variation
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Manifold flow distribution
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Cooling System Design: Modeling Results

• Performed better than the volumetric thermal resistance target of 21 cm3-K/W
• Fluid outlet temperature is 82°C

Technical 
Accomplishments

Inverter-scale conjugate heat transfer CFD: 2.2 kW total heat (718 W/cm2), 4.1 Lpm total flow rate

Fluid T maximum 
[°C]

Pressure drop 
[Pa]

Pumping power 
[W]

Volumetric thermal 
resistance [cm3-K/W]

Alpha 6 222 2,214 0.16 8.7

221.2°C

220.7°C220.7°C

221.4°C 220.8°C

220.5°C

220.1°C

220.1°C221.8°C

221.5°C 222.0°C

220.1°C

Device temperature contours from CFD. Results using Alpha 6 fluid at Tinlet = 65°C
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Experimental Validation
Technical 
Accomplishments

Cartridge heater design-temperature contours 
for the 718 W/cm2 heat flux condition 

Nylon cold plate manifold 
prototype

Designed the heaters
 To simulate devices and dissipate >700 W/cm2

Completed cold plate fabrication
 3D printed using inexpensive, lightweight 

plastic to test prototype
 Cold plate can be fabricated using conventional 

manufacturing methods 
6.35-mm-diameter 

cartridge heater
Temperature  [°C]

thermocouple 
holes (2)

copper block

Photo Credit: Gilbert Moreno (NREL)

Photo Credit: Gilbert Moreno (NREL)

Photo Credit: Paul Paret (NREL)

Cold plate size compared 
to cell phone
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Experimental Validation
Technical 
Accomplishments

Flow loop to test cold plate thermal performance

Fabricated new flow loop
 To characterize the thermal performance using different dielectric fluids at various fluid 

temperatures (-40°–70°C) and flow rates

Photo Credit: Bidzina Kekelia (NREL)

3D printed 
cold plate
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• Modeled the short-circuit behavior of the cooling concept 

• Used temperature-dependent thermal properties for SiC and Cu metallization 
and applied volumetric heat load to junction layer (from März et al.1)

Short-Circuit Behavior of SiC Power Devices

1 A. März, T. Bertelshofer, R. Horff, M. Helsper, M.M. Bakran, Explaining the short-circuit capability of SiC MOSFETs by using a simple thermal transmission-line model, in: 2016 18th Eur. Conf. Power Electron. Appl. EPE16 ECCE Eur., 2016: pp. 1–10.

FEA model FEA transient results

Technical 
Accomplishments

Junction layer

Top copper heatsink (2mm)

Drift region

Short-Circuit Energy (Heat Load)

Solder layer (100μm)

Metallization (5μm)
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Advanced Packaging/Cooling Concepts
Technical 
Accomplishments

Double-side cooled modules cooled using dielectric fluids

Reduce thermal 
resistance by 50% using 
single-phase cooling 
(dielectric fluid)

Reduce thermal 
resistance by >80% using 
two-phase cooling 
(dielectric fluid)

Double-
side cooled 

(design 
variations)

Single-side cooled 
(current design)



NREL    |    17

Responses to Previous Year Reviewers’ 
Comments

• This is a new project with no reviewer comments.
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Collaboration and Coordination

• John Deere (industry): Two-phase cooling for 
high-packaging-density planar inverter (CRADA)

• Elementum3D (industry): Provide 3D-printed 
metal parts to evaluate new heat exchanger 
concepts

• Dielectric fluid manufacturers

• ORNL
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Remaining Challenges and Barriers

• Creating a reliable, leak-free cooling system: main 
challenge is sealing the electrical leads that penetrate 
through the power module.

• Fluid compatibility with power electronics materials: 
selected fluids should be compatible with electronics 
materials but experiments should be conducted to 
verify compatibility.

• Pumping power requirements at low temperatures 
due to higher fluid viscosity.

• Industry adoption of new (non-conventional) 
technology.
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Proposed Future Research

FY 2019

• Complete the experiments using Alpha 6, AC-100, and ATF 
and evaluate the effects of varying the flow rate and fluid 
temperature.

• Complete the experiments to measure the thermal 
performance of the John Deere two-phase cooling system 
(CRADA).

FY 2020 and beyond

• Evaluate and develop new packaging/cooling concepts to 
further increase power density.

• Work with consortium partners to build an inverter that 
utilizes the advanced cooling concepts.

Any proposed future work is subject to change based on funding levels
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Summary

Relevance
• Effective thermal management is essential to achieve the year 2025 DOE power density (100 kW/L) 

and cost ($2.7/kW) targets.

Approach/Strategy
• Define a thermal target required to achieve the 100 kW/L power density.
• Evaluate and select the cooling strategies that enable high packaging density.

Technical Accomplishments
• Completed the design of an inverter-scale, dielectric fluid cooling concept that exceeds the volumetric 

thermal targets and thus enables achieving the 100 kW/L power density target. 
• Fabricated a heat exchanger prototype to conduct experiments and measured its thermal 

performance.
• Fabricated a new flow loop to allow us to characterize the thermal performance of the heat exchanger 

using various dielectric fluids and evaluate the effects of fluid temperature (-40°–105°C) and flow rate.
• Collaborated with John Deere to develop a two-phase cooling strategy for their inverter.

Collaborations
• John Deere
• Elementum3D 
• Dielectric coolant manufacturers
• ORNL
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