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Timeline

« Start-FY13
* Finish-FY15
« 22% complete

Budget

* Total project funding
— DOE share — 100%

* Funding for FY13: $ 375K

Overview

Barriers
Boost ratio/range and efficiency that can
drive dc-dc converter architectural choices,

Potential cost addition due to choice of dc-
dc converter and hybrid energy storage
systems

Targets Addressed
Traction Drive Power Electronics DOE 2020
targets
* Power density: >13.4 kWII
- Specific power: >14.1 kW/kg
 Service life: >15 years or 13000 hours
Partners

ORNL - Burak Ozpineci, Bradley Brown,
Jianlin Li, Lixin Tang, Tim Burress, Madhu
Chinthavali, Cliff White, Larry Seiber, Steven
Campbell

Maxwell o O &
Enabling En‘ergy’s Future™ ] O >< U S CHIRYSLEIR
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Project Objective

* Overall Objective

— Develop a bi-directional buck/boost dc-dc converter between the
regenerative energy storage systems (RESS) and the dc link (traction drive
inverter),

« Active energy management, inverter efficiency improvement, better RESS utilization.

— Design a hybrid battery/ultra-capacitor energy storage system architecture,

* Improved regenerative braking performance, improved overall fuel economy (all-
electric range), improved power density, peak power capability, and improved battery
lifetime.

— Design a modular reconfigurable battery and dc-dc converter architecture,
« Lower overall power electronics kVA rating and cost reduction on dc-dc converter.

* FY13 Objective

— Model, simulate, and analyze a modular reconfigurable dc-dc converter
architecture.
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Milestones

Date Milestones and Go/No-Go Decisions Status

April 2013 | Milestone: Model and simulate the modular reconfigurable | On track
dc-dc converter structures that are best utilized to meet the
vehicle power demand.

August Milestone: Model and simulate various hybrid RESS On track
2013 architectures.

August Go/No-Go decision: CHANGE if simulation results show

2013 that hybrid RESS approach outperforms the reconfigurable and

modular RESS battery approach.

September | Milestone: Prepare a summary report that documents the On track
2013 results, findings, performance comparisons, and
recommendations to be incorporated into the annual VTO
report.
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Approach/Strategy

e Current State-of-the-art Traction Drive System

Single battery pack utilized regardless of the power demand,

Single energy storage system (batteries) = Coupled power and energy
requirement,

Regenerative Energy Storage System (RESS) - Motor drive inverter
interface converter High inverter current - Lower efficiency

* Future traction drive system layout

Regenerative energy

storage system

RESS-DC link Traction drive
interf ace DC link inverter
| T ¥
+ A A
a |
IR I=0r
(200-450 Vpc) (720-1200 Vpc)
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Approach/Strategy

» Develop bidirectional dc-dc converter architectures:

Dual active bridge dc-dc converter,

Two-quadrant dc-dc buck-boost converter,
Resonant/improved dual active bridge converter,
Single stage dual active half-bridge dc-dc converter,
Current boosted active clamp forward dc-dc converter,
Bi-directional four switch buck-boost dc-dc converter,
Bi-directional dc-dc CUK converter,

Integrated buck/boost converter,

Multi-phase interleaved ZVS dc-dc converter.

Dual active-bridge dc-dc converter
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Approach/Strategy (Cont’d)

Develop control systems for active energy management that have
potential for cost reduction and efficiency improvement.

de-de
converter
1

The RESS and modular dc-dc
converters will be best utilized dede |4

to meet the vehicle power [
demand. =
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Improved service life,
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Modular reconfigurable RESS and dc-dc
converters
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Technical Accomplishments and
Progress - Overall

 Reviewed and modeled bi-directional dc-dc converter architectures that
interface the RESS to the traction drive inverter and created a summary report
discussing on the operation principles, controls, advantages and drawbacks.

* Reviewed and modeled hybrid RESS architectures and created a summary
report based on the advantages, drawbacks, control systems, performance,
number of parts, efc.

» Selected and modeled four battery/UC hybridization strategies.
— Built simulation models of the battery and UC.
— Modeled hybridization architectures.

— Due to simulation time constraints, a portion of the UDDS drive cycle, t=[690, 760] that
includes acceleration, braking, and idling simulated for these hybridization architectures.

— Collected and compared simulation results.
— Created a comparison results table for these RESS hybridization architectures.
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Technical Accomplishments and
Progress

 Developed power electronic interfaces for hybrid RESS:
— Decoupled energy and power: battery/ultra-capacitor (UC)
— Active power and energy management based on the drive train power demand

Passive Parallel Architecture (PPA) Cascaded Converters Architecture (CCA)
DC link
DC link
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Technical Accomplishments and Progress
 Implemented a cell pack model needed in dynamic system simulations

+((;ha;ge) {0 o - Utilized the governing charge and
- 1Scharge . .
Sen 0 ° discharge equations of the model
Exp(s) _ A
Sel(s) 11Biy(0b+1 Exp - A controlled voltage source was
% b used (current controlled voltage
o b source to represent V=f(l) cell
> Rint T
I T B e characteristics)
Vi Controlled voltage/ "\ _ Vo s = ol L5k Brp Baipe)| o \foltage was calculated with a non-
o "/ V. Cell pack model linear equation based on the state-
. of-charge (SOC) of the cell;
E0 =390.0156, R =0.081008, K =0.045728, A = 30.585,B=1.374 V=f(I!SOC)
a0 ST USRS USRS SRR O ]
s | - Reference: O. Tremblay and L. -A.
;4002\_\_\ __________ S S R— R— J— j__z__s_o__f_x_ Dessaint, “Experimental Validation of
g T f 5 a Battery Dynamic Model for EV
SR T ] Applications,” World Electric Vehicle
W R TS S N TSSO SRS | Journal, vol. 3, May 13 - 16, 2009.
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Technical Accomplishments and Progress

« Completed
simulations for the
passive parallel,
cascaded, modified
cascaded, and the
multiple parallel
converters
architectures under
same conditions.

* Due to simulation
time constraints, a
portion of the UDDS
drive cycle, t=[690,
760] that includes
acceleration,
braking, and idling
simulated for these
hybridization
architectures.

UDDS drive cycle power
demand
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Technical Accomplishments and Progress
« Completed PPA (Passive Parallel Architecture) Simulations
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PPA Control System

Gl,2

Voltage control loop Switching
Oscilator —* S
1% * f, =10kHz
de_ref i+ SZKD+SKP+K, 1 cnv ™ Q
v f ° 1] R
load PID Controller +
Converter reference current Comparator S-R Latch

lcnv_sensed

Load current

Peak Current Mode Controller

70 ‘

UC current

40~

® D B S
S S oS o 2 o
T T T T T T

, Ultra-capacitor Current [A]

(=3
7

-120 L

690 700

90.5

Battery SOC

90
89.5

®
°

Battery SoC [%]
o
%
n

760

87.5
87
-3%90 750 ; 10 730 - 730 7140 ;50 760 86.5 L | | | | |
B Time [s] 690 700 710 720 Time [s] 730 740 750 760
attery current
attery ct ucC soc
10
60 | T
501~ - _ 951 _
< g
é “r ] 2 o
S 1 3 w
g 20 | §. 85— -
g E
101 5 80 -
ok
l l l l l l 7’t’>90 ;00 7110 7120 730 ;40 7150
690 700 710 720 Time [s] 730 740 750 760 Time [s]
500
480 -
460 -
> 440} -
gn 4201 4
“1 DC link vol
% 30 ] ink voltage
S 360 m
340 -
320 |
| | | | ) ) *» OAxK RIDGE NATIONAL LLABORATORY
1%90 700 710 720 Time [S] 730 740 750 760 MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY



Technical Accomplishments and Progress
» Completed CCA (Cascaded Converters Architecture) Simulations
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Technical Accomplishments and Progress

« Completed CCA (Cascaded Converters Architecture) Simulations with modified controls
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Technical Accomplishments and Progress
« Completed MPCA (Multiple Parallel Converters Architecture) Simulations
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Technical Accomplishments and Progress
(Cont’d)

e Created Results Table

Passive Cascaded Cascaded Parallel

Criteria Parallel | Converters (manipulated Converters
(PPA) (CCA) controls) (CCA) (MPCA)

Control simplicit 1 2 3
Structure complexit
Number of converters

N DN DN DN

1
1
1
2
5 6 6 6

86.7194%  86.2462% 86.6598% 87.0305%
89.8995%  91.9084% 90.4502% 87.1022%
~T[A] ~9 [A] ~1.7[A] ~1.8[A]

Cycle based energy efficiency 95.25%, 90 349 90.72% 95.25%

RESS and dc-dc converters combined

Maximum DC link voltage variation 9 599/ 9 42% 2.51% 0.77%
percentage

% OAK RIDGE NATIONAL LABORATORY
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Conclusions

 According to the simulation results, PPA has the simplest structure and the
least number of parts and components.

* The high efficiency of PPA is mainly due to the simple configuration and to
the fact that there is no additional dc-dc converters used for hybrid RESS.

- Although PPA has high efficiency, it does not provide control flexibility and
the battery current ripple and DC link voltage ripple values are not as good
as MPC architecture.

« MPCA provides the highest efficiency (as high as the PPA) and the best DC
link voltage and battery current ripples.

* Improving the controls with an additional current rate limiter for the CCA
improved the efficiency and the overall performance.

- Efficiency is computed as the cycle based energy efficiency; i.e., the input
and output power of the system is integrated over the time period of
simulation.
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Collaboration and Coordination

Organization

Type of Collaboration/Coordination

Maxwell, IOXUS anwell o —O
Ml $oxUS

Fast response electrochemical capacitor
development

Chrysler *

CHRYSLER

Power electronics dc-dc interface trends for
RESS

ORNL Energy Storage Program

Design guidelines and research on modular
battery pack configuration

ORNL Battery Manufacturing Facility

Manufacturing research on modular battery
development

&O\K RIDGI NATIONAL LABORATORY

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



19

Proposed Future Work

* Remainder of FY13

— Modeling, simulations, and analysis of modular reconfigurable dc-dc
converter architectures. Share results with APEEM team members.

* FY14

— Fabricate and test a candidate 10 kW reconfigurable dc-dc converter
architecture for experimental validation of models and simulations.
Share results with APEEM team members.

* FY15

— Fabricate and test a full rated (55 kW) reconfigurable dc-dc converter
architecture. Share results with APEEM team members.

&O\K RII)GI NATIONAL LLABORATORY
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Summary

Relevance: This project is targeted toward active energy management and reduced size and
cost of the power electronic converters that interface RESS and traction drive inverter.
Approach:

— Develop a bi-directional buck/boost dc-dc converter between the regenerative energy
storage systems (RESS) and the dc link (traction drive inverter),

— Design a hybrid battery/ultra-capacitor energy storage system architecture,

— Design a modular reconfigurable dc-dc converter architecture,
Collaborations: Collaborations with Chrysler, Maxwell, IOXUS, and ORNL'’s Energy Storage
Programs and Battery Manufacturing Facility are being used to maximize the impact of this
work.
Technical Accomplishments:

— Reviewed and modeled bi-directional dc-dc converters.

— Reviewed and modeled hybrid RESS architectures and created a summary report based
on the advantages, drawbacks, control systems, performance, number of parts, etc.

— Selected and modeled four battery/UC hybridization strategies. Run the simulations and
compared the performance results.
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