

US Department of Energy Vehicle Technologies Program

Plenary: Battery R&D Activities

May 14, 2012

David Howell
Team Lead, Hybrid & Electric Systems
Vehicle Technologies Program
U.S. Department of Energy
1000 Independence Avenue
Washington DC 20585

VTP Battery R&D

MISSION: Advance the development of batteries to enable a large market penetration of hybrid and electric vehicles to achieve large national benefits.

- □ Battery affordability and performance are the keys. Program targets include:
 - Increase performance (power, energy, durability)
 - Reduce weight & volume
 - Increase abuse tolerance
 - LOWER COST!
- □ 2015 GOAL: Reduce the production cost of a PHEV battery to \$300/kWh (70% below 2008 value)
- □ EV Everywhere: Reduce the production cost of an EV battery to \$125/kWh by 2022

Major Technical Challenges and Barriers

Barrier/Challenge	Potential Solutions
Reduce cost Next Generation lithium ion (e.g., high capacity cathodes)	 □ Improve material and cell durability □ Improve energy density of active materials □ Improved manufacturing processes □ Improved design tools/design optimization
Improve abuse tolerance	 Non-flammable electrolytes High-temperature melt integrity separators Advanced materials and coatings Battery cell and pack level innovations such as improved sensing, monitoring, and thermal management systems
Significantly increase energy density 3rd generation lithium-ion (e.g., silicon anode) Lithium-Sulfur Lithium-air	 Develop ceramic, polymer, and hybrid structures with high conductivity, low impedance, and structural stability Improved electrolyte/separator combinations to reduce dendrite growth

Battery Materials R&D Focus

Time

VTP Energy Storage R&D: FY 2012

Energy Storage R&D \$93M

Exploratory Materials Research \$26M

New Materials Research

Diagnostics & Modeling

Applied Battery Research \$16M

Electrochemistry Optimization

Power & Capacity

Life, Improvement

Battery Development \$39M

Next Generation Cell Development

Performance & Cost Reduction

Testing,
Analysis &
Design
\$12M

Standardized Testing
Life/Cost Projections

Design Tools

PHEV Battery Performance Status

Battery Technical Targets/Status

Data based on the results of the initial PHEV battery development contracts awarded by USABC to A123Systems, LGChem, and Johnson Controls

DOE Energy Storage Targets	PHEV (10 mile AER)		PHEV(40 mile AER)	
	Target	Status (2011)	Target	Status (2011)
Discharge Pulse Power: 10 sec (kW)	45	~70	38	~95
Regen Pulse Power: 10 sec (kW)	30	~40	25	~70
Available Energy (kWh)	3.4	3.4	11.6	11.6
Calendar Life (year)	15	8-10	10+	8-10
Cycle Life (deep cycles)	5,000	3,000-5,000	5,000	3,000-5,000
Maximum System Weight (kg)	60	~57	120	~175
Maximum System Volume (I)	40	~45	80	~100
System Production Price (@100k units/year)	\$1,700	~2,600	\$3,400	~6,850

EV Battery Performance Status

Battery Performance Status

- Initial EV battery development contracts started in FY2011
- ☐ Focus on high voltage/high capacity cathodes & EV cell design optimization
- □ Data based on initial work from USABC Envia Systems & Cobasys/SBLimotive contracts

Energy Storage Goals	AEV (2020)	Current
Equivalent Electric Range, miles	200-300	✓
Discharge Pulse Power (10 sec), kW	80-120	✓
Regenerative Pulse Power (10 sec), kW	40	✓
Available Energy, kWh	40-60	✓
Recharge Rate, kW	120	50
Calendar Life, years	10+	TBD
Cycle Life, cycles	1,000 deep cycles	TBD
Operating Temperature Range, °C	-40 to 60	0 to 40
System Weight, kg	160-240	500-750
System Volume, liters	80-120	200-400
Production Cost (@100,000 units/year)	\$125/kWh	< \$600

New Awards from FY2011 FOA

- □ Various companies recently awarded to develop advanced Lithium-ion cells and manufacturing processes which would reduce cost
- ☐ Each award: \$2M \$5M

Awardees

Battery Cells (>300 Wh/kg and >500 Wh/l)

Amprius, Inc.

Dow Kokam (Dow Chemical/ORNL)

Nanosys, Inc. (LG Chem)

3M Company

Seeo, Inc.

Penn. State University (ANL/JCI)

Low-cost Processing and Design 2x cost reduction (<\$400/kWh)

Johnson Controls (Maxwell/Entek)

Miltec UV Int. (ANL/ORNL)

A123 Systems (Maxwell)

Applied Materials (LBNL/ORNL)

DENSO Int'l America (NREL)

Optodot Corp (Dow Kokam, URI, Madico, ISP)

R&D Highlights: Industry

High Specific Energy Cathodes (Envia Systems)

- ☐ High Specific Energy Cell
 - Cathode high capacity layeredlayered
 - Anode graphite
 - Successfully scaled-up cathode material and built large capacity cells (20Ah)
 - Achieved over 200 Wh/kg
- □ ARPA-E award to develop very high capacity silicon-carbon anode
 - Record-setting cell specific energy (>400 Wh/kg).

SEM image of cathode #8 used in cell build #2

Envia Systems 45Ah cells

R&D Highlights: Universities

Materials Search Engine (LBNL/MIT)

- A Google-like materials search engine
 - Over 15,000 computed compounds.
 - Searchable access to general materials properties.
 - 'Apps' designed to aid in materials design for specific application areas such as Li-ion battery technology.
 - Available at LBNL website

Sample graph of a portion of the 15,000 compounds contained in the materials project database

Accomplishments

Major R&D Achievements (2009–2011)

- ☐ Lithium-ion battery cost reduction on track (USABC)
 - Production cost reduced to ~\$650/kWh for 100,000 packs/year
- ☐ Lifetime of lithium-ion batteries extended (USABC/Labs)
 - up to 10-15 years for some technologies
 - 3,000-5,000 deep discharge cycles
- Cathode technology for Chevrolet Volt battery (ANL)
 - Licensed to GM, LG Chem, BASF, Toda America, Envia
 - Focused R&D effort to solve remaining issues
- Significantly expanded R&D to develop Silicon Composite & Metal alloy materials and cells
- Research activity focused on beyond-Lithium-ion technology initiated

Recovery Act: Battery Manufacturing

Establish U.S. EDV battery manufacturing capacity

ARRA: \$1.5B INDUSTRY: \$1.5B

Cell & Pack Production Capacity (10 kWh packs)

- 2008 0
- 2012 140,000
- 2015 500,000

~5M kWh / year

- Johnson Controls: cell production and pack assembly at in Holland, MI
- A123Systems: cathode, cell, & pack assembly in Livonia & Romulus, MI
- EnerDel: Cell production & pack assembly at Fishers & Mt Comfort, IN
- General Motors: battery pack assembly at Brownstown, MI
- SAFT: cell production at Jacksonville, FL
- Exide: advanced lead acid battery production established in Columbus, GA
- East Penn: Advanced Lead Acid battery production established in, PA
- Dow Kokam: cell & pack capability in Midland, MI in 2012
- □ LG Chem: cell & pack capability in Holland, MI in 2012

Toda America, Inc. Battle Creek Facility

A123Systems, Livonia Facility

Recovery Act: Battery Manufacturing

Progress

Materials Production

Cathode

- TODA: production established
- ☐ BASF: Target: Commission in 4Q

Anode

- ☐ EnerG2: production established
- ☐ FutureFuel: production established
- □ Pyrotek: production established

Separator

- ☐ Celgard: production established
- ☐ Entek: Engineering scoping completed

Electrolyte

- ☐ Honeywell: Li-salt pilot plant operational
- ☐ Novolyte: *Equipment installation*

Lithium

☐ Chemetall Foote: lithium hydroxide

Cell Hardware

□ H&T Waterbury: production established

Toda America, Inc. Battle Creek Facility

A123Systems, Livonia Facility

For Additional Information...

Dave Howell, Team Lead, Hybrid and Electric Systems 202-586-3148