Non-Rare Earth Magnesium Bumper Beams

Presenter: Darrell Herling
Position: Manager
PM/PI: Scott Whalen
Team: Md. Reza-E-Rabby
Dalong Zhang
Jens Darsell
Tim Skszek

1Pacific Northwest National Laboratory
2Magna International, Corporate R&D

Project ID#: MAT-149

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

- Project start date: Jan. 2019
- Project end date: Dec. 2020
- Percent complete: 13%

Timeline

Budget

- Total project funding: $1,000K ($500K/yr)
- $500K - DOE share
- $500K - Industry share

Barriers

- Material technology roadmap for magnesium
 - Low cost feedstock
 - Improved alloys for energy absorption
 - Manufacturing of extrusions
 - 250 MPa yield strength and 15% elongation by 2025

Partners

- Magna International
- Pacific Northwest National Laboratory (PNNL)
Relevance

• **Challenge**
 - Improved energy absorption in magnesium alloys
 - Lower cost materials and manufacturing pathways

• **Objective**
 - Develop Shear Assisted Processing and Extrusion (ShAPE) to fabricate *magnesium extrusions with rectangular profile*
 - Eliminate costly rare-earth (RE) elements
 - Equivalent energy absorption relative to Al extrusion
 - Progress toward multi-zone extrusions

• **Benefit**
 - >30% weight reduction possible by replacing of aluminum bumper beams with magnesium alloy
What is ShAPE?
- Scalable method of extruding materials with microstructures and bulk properties that cannot be achieved by conventional extrusion
- Linear and rotational shear are combined to plasticize material without melting

This project will adapt ShAPE for rectangular hollow profiles
- Move from round tubes to non-circular profiles of interest in bumper beam applications
- Adapt ShAPE for portal bridge die approach

Benefits of ShAPE for Mg
- Grain refinement and texture alignment
 - Eliminates asymmetry in tensile/compressive strength
 - Energy absorption of non-RE ZK60 equivalent to AA6061
 - >20% room temperature elongation
- 10-20X reduction in ram force
- Potential for industrial scale
ShAPE extrusion enables non-RE Mg alloy ZK60 to attain energy absorption similar to AA6061.
• Project scope finalized on Jan. 3rd, 2019
• Project kick-off with PNNL and Magna in Richland, WA on Mar. 12th, 2019
• Task 1: Initiated die design process

**Patent-Pending PNNL Technology

Work has begun on design of portal bridge dies for ShAPE extrusion of non-circular cross sections
Demonstrated that ZK60 can be re-combined in weld chamber after flowing through portals

- Die design variations underway to investigate the effect of die design features on material flow in weld chamber and around mandrel
- Magna will be conducting modeling and simulation efforts of material flow within the portal bridge die to aid in die design

Material re-combination shown for portal bridge die integrated into ShAPE process
Collaboration

• Pacific Northwest National Laboratory
 ▪ Scott Whalen (PI)
 ▪ Md. Reza-E-Rabby (Die design)
 ▪ Jens Darsell (Process development)
 ▪ Dalong Zhang (Characterization)

• Magna International
 ▪ Tim Skszek (PI)
 ▪ Massimo DiCiano (Flow Modeling)
 ▪ Mechanical testing of ShAPE extrusions
 ▪ Design of extrusion profile geometry
 ▪ Modeling of material flow in ShAPE extrusion dies
 ▪ Extrusion Die Fabrication
Proposed Future Research

Proposed future work is subject to change based on funding levels.

<table>
<thead>
<tr>
<th>Task Number & Brief Description</th>
<th>FY2019</th>
<th>FY2020</th>
<th>FY2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1: ShAPE™ of Rectangular non-RE Mg Extrusions (PNNL Lead)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status: Underway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2: Characterization of ShAPE Extrusions (PNNL Lead)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status: Not Started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3: Definition of Multi-Zone Extrusion Profile (Magna Lead)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status: Not Started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4: Mechanical Testing of non-RE Mg Extrusions (Magna Lead)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status: Not Started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5: ShAPE™ of Multi-Zone non-RE Mg Extrusions (PNNL Lead)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status: Not Started</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 6: Project Summary (PNNL + Magna)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status: Not Started</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Extruded non-RE Mg with rectangular hollow profile**
- **Perform microstructural characterization and mechanical property testing**
- **Complete mechanical testing of ShAPE extrusions**
• **Relevance**
 - Improved energy absorption in Mg alloys
 - Lower cost materials and manufacturing
 - >30% weight reduction possible by replacing of aluminum bumper beams with magnesium alloy

• **Approach**
 - Develop Shear Assisted Processing and Extrusion (ShAPE) to fabricate non-RE magnesium extrusions with rectangular profile
 - Equivalent energy absorption relative to Al extrusion
 - Progress toward multi-zone extrusions

• **Accomplishments**
 - Project kick-off between PNNL and Magna on 3/12/19
 - Portal bridge die design underway – Joint effort between PNNL and Magna
 - Initial trials performed to demonstrate re-combination of flow streams in portal die