

Non-Rare Earth Magnesium Bumper Beams

Presenter:	Darrell Herling ¹
Position:	Manager
PM/PI:	Scott Whalen ¹
Team:	Md. Reza-E-Rabby ¹
	Dalong Zhang ¹
	Jens Darsell ¹
	Tim Skszek ²

¹Pacific Northwest National Laboratory ²Magna International, Corporate R&D Solid

Phase

PROCESSING

Project ID#: MAT-149

PNNL is operated by Battelle for the U.S. Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start date: Jan. 2019
- Project end date: Dec. 2020
- Percent complete: 13%

Barriers

- Material technology roadmap for magnesium
 - Low cost feedstock
 - Improved alloys for energy absorption
 - Manufacturing of extrusions
 - 250 MPa yield strength and 15% elongation by 2025

Budget

- Total project funding
 - \$1,000K (\$500K/yr)
- \$500K DOE share
- \$500K Industry share

Partners

- Magna International
- Pacific Northwest National Laboratory (PNNL)

Challenge

- Improved energy absorption in magnesium alloys
- Lower cost materials and manufacturing pathways

• Objective

- Develop Shear Assisted Processing and Extrusion (ShAPE) to fabricate *magnesium extrusions with rectangular profile*
- Eliminate costly rare-earth (RE) elements
- Equivalent energy absorption relative to AI extrusion
- Progress toward multi-zone extrusions

Benefit

 >30% weight reduction possible by replacing of aluminum bumper beams with magnesium alloy

From DOE Magnesium Front End Research and Development (MFERD)

• What is ShAPE?

- Scalable method of extruding materials with microstructures and bulk properties that cannot be achieved by conventional extrusion
- Linear and rotational shear are combined to plasticize material without melting

• This project will adapt ShAPE for rectangular hollow profiles

- Move from round tubes to non-circular profiles of interest in bumper beam applications
- Adapt ShAPE for portal bridge die approach

Benefits of ShAPE for Mg

- Grain refinement and texture alignment
 - Eliminates asymmetry in tensile/compressive strength
 - Energy absorption of non-RE ZK60 equivalent to AA6061
 - >20% room temperature elongation
- 10-20X reduction in ram force
- Potential for industrial scale

ZK60 Conventional ZK60 ShAPE extrusion from casting extrusion from casting ShAPE Extrusion Mg ZK60 2.00" OD 0.060" Wall Energy absorption of ZK60 and Mg-2Si similar to AA6061-T6 300 250 Normalized Load per unit area (N/mm^2) 200 Torque: 2100 ft-lb Force: 100 ton 150 Speed: 500 rpm 100

ShAPE extrusion enables non-RE Mg alloy ZK60 to attain energy absorption similar to AA6061

Compression

- Project scope finalized on Jan. 3rd, 2019
- Project kick-off with PNNL and Magna in Richland, WA on Mar. 12th, 2019
- Task 1: Initiated die design process

Work has begun on design of portal bridge dies for ShAPE extrusion of non-circular cross sections

Demonstrated that ZK60 can be re-combined in weld chamber after flowing through portals

- Die design variations underway to investigate the effect of die design features on material flow in weld chamber and around mandrel
- Magna will be conducting modeling and simulation efforts of material flow within the portal bridge die to aid in die design

Material re-combination shown for portal bridge die integrated into ShAPE process

• Pacific Northwest National Laboratory

- Scott Whalen
- Md. Reza-E-Rabby
- Jens Darsell
- Dalong Zhang

- (PI)
- (Die design)
- (Process development)
- (Characterization)

MAGNA

Magna International

Tim Skszek

(PI)

- Massimo DiCiano (Flow Modeling)
- Mechanical testing of ShAPE extrusions
- Design of extrusion profile geometry
- Modeling of material flow in ShAPE extrusion dies
- Extrusion Die Fabrication

LightMAT 🔞

MAGNA Proposed Future Research

Task Number & Brief Description	FY2019				FY 2020				FY 2021			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1: ShAPE [™] of Rectangular non- RE Mg Extrusions (PNNL Lead) Status: Underway					Extruded non-RE Mg with rectangular hollow profile							
Task 2: Characterization of ShAPE Extrusions (PNNL Lead) Status: Not Started						Perform microstructural characterization and mechanical property testing						
Task 3: Definition of Multi-Zone Extrusion Profile (Magna Lead) Status: Not Started							>	ne multi-zo extrusion p	ne non-RE rofile			
Task 4: Mechanical Testing of non-RE Mg Extrusions (Magna Lead) Status: Not Started								\diamond		mechanic		
Task 5: ShAPE [™] of Multi-Zone non-RE Mg Extrusions (PNNL Lead) Status: Not Started												
Task 6: Project Summary (PNNL + Magna) Status: Not Started												

Proposed future work is subject to change based on funding levels

LightMAT

Relevance

- Improved energy absorption in Mg alloys
- Lower cost materials and manufacturing
- >30% weight reduction possible by replacing of aluminum bumper beams with magnesium alloy

Approach

- Develop Shear Assisted Processing and Extrusion (ShAPE) to fabricate non-RE magnesium extrusions with rectangular profile
- Equivalent energy absorption relative to Al extrusion
- Progress toward multi-zone extrusions

Accomplishments

- Project kick-off between PNNL and Magna on 3/12/19
- Portal bridge die design underway – Joint effort between PNNL and Magna
- Initial trials performed to demonstrate re-combination of flow streams in portal die