2013 DOE Vehicle Technologies Program Review

Next Generation Inverter

Greg S. Smith General Motors May 14, 2013

Project ID # APE040

This presentation does not contain any proprietary, confidential, or otherwise restricted information

General Motors Company

Overview

Timeline

- Start October 2011
- Finish January 2016
- 2.0% Complete

Budget

- Total project funding
 - DOE \$6.0M
 - GM \$10.6M
- Funding received
 - FY12 \$0.8M
 - FY13 \$1.1M

Barriers

- Cost
- Efficiency
- Performance and Lifetime
- Mass and Volume

Partners

- Lead General Motors
- Tier 1, 2, & 3 Suppliers Hitachi, Delphi, Infineon, HRL, Panasonic, AVX, Kemet, and VePoint
- Collaborations National Renewable Energy Laboratory, and Oak Ridge National Laboratory

Relevance

Research Focus Area: Inverter

→ Modularity/Scalability

→Components – power module, gate drive, capacitor, current sensor and control card

→ Supplier development

Objective

- Program, develop the technologies and the engineering product design for a low cost highly efficient next generation power inverter capable of 55kW peak/30kW continuous power.
- Current (3/12 through 3/13), investigate, experiment, and evaluate potential technology for automotive application, begin concept and breadboard

Addresses Targets

 The Inverter is to improve the cost of the power electronics to \$3.30/kW produced in quantities of 100,000 units, and the power density to 13.4kW/l, and a specific power of 14.1kW/kg, with an efficiency >94% (10%-100% speed at 20% rated torque) to meet the DOE 2020 goals

Uniqueness and Impacts

- Technology Co-development with the Tier 1, 2, and 3 suppliers
- Detailed knowledge of vehicle application and ability to understand and assess vehicle impacts to make necessary materials and technology trades.

Milestone

Month /Year	Milestone or Go/No-Go Decision	Status
June 2012	Power Inverters Based on Conventional, Transfer Molded, and Encapsulated Power Module Technology Delivered for Evaluation	Complete
Jan 2013	Initial Technology and Production Cost Assessment Complete with Report	Complete
Jan 2014	Concept Design Review – DOE "Go/No-Go" Decision	
June 2014	Critical Design Review	
	DESIGN	

Approach

- Engage with Tier 1, 2, and 3 suppliers along with National Labs to co-develop technology that reduces cost and increase efficiency, without increasing volume or mass
- Ensure modularity and scalability of inverter to meet all vehicle applications
 - Packaging will fit in all vehicle applications
 - Consistent electrical parameters and mechanical structure
 - Has to adhere to global manufacturing processes
 - Has to provide adequate cooling for the capacitor
 - Has to have low inductance
- Demonstrate technology to verify feasibility and cost

Strategy

- Inverter requirements need to be refined to better describe real vehicle use
 - Inputs necessary for actuate results are as follows: vehicle, powertrain, and electric traction system
- Select technologies that are aligned with vehicle application to make common inverters
 - Power module, gate drive, capacitor, and control card

- Cost reduction versus performance trade-offs
- Ensure compatibility with future switches

Accomplishments - Cost

- Assessment of three inverter types with complete cost models
 - Transfer molded
 - Encapsulated
 - Conventional
- Identified cost elements
 - Recurring material, labor, overheads, etc.
 - Non-Recurring engineering, equipment, etc.
 - Other logistics, packaging, misc.
- Developed understanding of cost reduction attributed to technology improvements and commonality of design

Accomplishments – Specifications/Requirements

- Complete matrix of electric drive applications with requirements has been completed
 - Integrated and remote mounted applications
 - Improved requirements in critical areas such as thermal conditions over life and DC bus ripple
- Finalize specification for Next Gen Inverter
- Trade study of validation test requirements based on modular/scalable inverter and resulting simplification

Validation Impact Assessment- Current Approach

Temperature Rise

Modular/Scalable Approach- Level 1,2 or 3

General Motors Company

Modular/Scalable Approach-Level 1,2 or 3

General Motors Company

Validation Reduction Over Current

	Current Approach		Modular /Scalable		Modular/Scalable Re-Use	
	Qty.	Duration	Qty.	Duration	Qty.	Duration
Inverter Assembly			58%	56%	58%	56%
Power Module					100%	100%
Bulk Capacitor					100%	100%
LV or HV Connector Systems					100%	100%

Accomplishments — Technology Evaluation

- Power Module
 - Thermal cycling testing
 - Transfer Molded version 1 test complete, 2nd version now in test
 - Encapsulated in test
 - Power cycling testing
 - Transfer Molded version 1 test complete, 2nd version now in test
 - Encapsulated in test

Accomplishments — Technology Evaluation (con't)

- Capacitor in test
- Gate drive three different chip sets being evaluated
- Control card built and under test

General Motors Company

Collaborations and Coordination

Future Work

FY13

- Continue Technology Assessment and Improve Production Cost Assessment
- Start Design Concept
- Build early unit for evaluation

FY14

- Concept Design Review DOE "Go/No Go"
- Critical Design Review

Summary

- CTS (Component Technical Specification) completed
- Power module testing
 - Version 1 transfer molded complete
 - Version 2 transfer molded, and encapsulated in test
- Capacitor in testing
- Three gate drive chip sets under evaluation
- Control card built and under test

Questions

General Motors Company

Next Generation Inverter

Backup

Cost Reduction Targets by System and Component Category

	Current 55kW DOE	Moderate Risk	Medium Risk	High Risk	Reduction Path
System/Packaging	\$143	(\$70)	(\$20)	(\$34)	Simplify interconnections and interfaces, elimination of discrete current sense. Determine inverter layouts optimized for cost (efficient layout and scalability/modularity) and efficiency.
Power Module	\$117	(\$62)			Develop scalable module, interconnects, jointing, on-chip current and temp sense, reduce package inductance, replace high cost materials, and. Integration of heat sink and chassis. Cost effective GaN, SiC, or other advanced switches allowing for significant increase in power density.
Capacitor	\$100	(\$40)		(\$20)	Advanced film technology, thinner films- increase temperature, 140 to 150C, and increase dielectric constant, 2.3 to 3.0, improving density. Additionally reduce capacitance requirement through better system management.
Gate Drive	\$27	(\$4)			Integrate chips to decrease PWB area and part count. Improve gate drive IC to support on-die current and temp sense. Ensure driver compatibility with SiC and GaN.
Control Card	\$48	(\$15)			Integrate two processors into dual core chip, integrate torque security chips.
Total Cost Savings		(\$191)	(\$20)	(\$54)	
Total Inverter Cost	\$435	\$244	\$224	\$170	DOE Target is \$182

Areas of Discipline/Responsible Engineers

General Motors Company <u>GM</u>

Data Flow/Elements for Proper System Requirements

