

<u>Motor with Advanced Concepts for </u><u>High power density and <u>IN</u>tegrated cooling for <u>Efficiency (MACHINE)</u></u>

DE-EE0008867

DOE/VTO Annual Merit Review Presentation

Jagadeesh Tangudu (Principal Investigator)

Raytheon Technologies Research Center

June 1-4, 2020

Project ID: ELT253

This presentation does not contain any export controlled technical data

Project Overview

Timeline

Project Start Date: Oct 2019 (Jan 2020)

Project End Date: Dec 2022

Percent Complete: 10%

Budget

Total Project Budget

DOE Share: \$750k Cost Share: \$187.5k

Funding for 2020: \$599.6k Funding for 2021: \$337.9k

Program Barriers

Project goals include the following

- High power density (>8X)
- Lower motor cost (< \$6/kW)
- Improve life (>2X)

These project goals are extremely challenging...

- Increased power density require reduction in volume
- One option to achieve is by increasing the speed (>20 kRPM)
- High speed operation would present mechanical challenges along with limited pole count
- High frequency also brings in higher loss density and challenging thermal management

Partners

- Raytheon Technologies Research Center (formerly known as United Technologies Research Center)
- John Deere

Multi-Disciplinary Team

- Seedling project
- Evaluate proposed technology during BP-1 and down-select technologies suitable for meeting target metrics
- Path for risk reduction using sub-component demonstrations during BP-2
- Multi-disciplinary team to explore the optimal solutions

Challenges

- Increase in 8X volumetric power density is a challenging target to meet
- Achieving this would require increase in speed, but this posed two critical challenges
 - Trade between concentrated (limited slot-pole combination) vs. distributed winding (larger end winding)
 - Use of non-heavy rare earth magnets reduces the energy product and operating temperatures
 - Increase in fundamental frequency, i.e., increase in core losses as well as increase in AC winding losses in copper
 - Mechanical challenges such as rotor dynamics, centrifugal loads, larger air gap's (lower power density), bearing life, mechanical losses etc.
 - Thermal management of the motor is also critical for improved life and efficiency
- Use of reduced loss steel (for mitigating high frequencies) and Litz's wire (for AC winding losses) would increase material and manufacturing cost
- Impact of technologies required to meet the power density metrics while minimizing the cost and life is critical

Project Objectives (Year 2020 / 21)

- Explore machine trade space
- Identify optimal operating speed (>20 kRPM)
- Use of non-heavy rare earth magnets
- Identify suitable lamination steel for reduced losses
- Evaluate achievable slot fill factor with segmented stator sections
- Optimal use of Electromagnetic and thermal management solutions to meet these stringent targets

Motor

Motor Target Metrics									
Specifications	Units	Values							
Power Density (greater than)	kW/L	50							
Cost (less than)	\$/kW	6							
Life (greater than)	Х	2							
Derived Metrics from	n FOA								
Peak Power	kW	125							
Min Speed (greater than)	RPM	20000							
DC Bus Voltage	V	1050							
Volume (Less than)		2.5							
Unit Material Cost (Less than)	\$	750							
Based Speed	RPM	20000							
Peak Torque @ Base Speed	Nm	59.68							

John Deere Drive [1]									
Specifications	Units	Values							
Pow er	kW	200							
Pow er Density	kW/L	40							
Drive DC Bus Voltage	V	1050							
RMS fundamental line-line									
voltage	V I-I RMS	690							
Drive Maximum Fundamental									
Frequency	kHz	2 (?)							
Drive Switching Frequency	kHz	20 (?)							
Number of Phases (>)	[-]	3							

Project Relevance

ETDS Targets										
Year	2020	2025	Change							
Cost (\$/kW)	8	6	25% cost reduction							
Power Density (kW/L)	4.0	33	88% volume reduction							

- Historically, VTO emphasized HEV applications, with target power levels at 55 kW [1]
- Vehicle mass has been increasing since then (>100kW) to meet consumer vehicle performance [1]
- Entire Electric Traction Drive Systems (ETDS) target metrics for 2025 <\$6/kW & > 33kW/L^[1]

Electric Motor Targets											
Year	Change										
Cost (\$/kW)	4.7	3.3	30% cost reduction								
Power Density (kW/L) ¹	5.7	50	89% volume reduction								

- Breaking down the target metrics to motor and drive would results in motor power density metrics > 50 kW/L with 89% reduction in volume [1]
- 100+ kW electric machine with its rotor, rotor shaft, stator with ending externs, housing and cooling but not reduction gearing [1]

Uniqueness and Impact

In-order to meet the target metrics proposed MACHINE concept uses a Motor Drive architecture

- Wide Band Gap (WBG) drive
- Segmented stator fractional slot concentrated windings (FSCW)
- Surface mounted permanent magnets
- Operating at speed (>20,000 rpm)
- Materials
 - non-heavy rare earth
 - low loss electric steel for reduced core losses
- In-slot ultra-low-volume embedded cooling channels

These technologies in combination would potentially lead to

- volumetric power density of >50 kW/L
- cost of \$6/kW, and
- 2X improvement in motor life

52 kW/L (8X increase), Cost of \$6/kW, 2X higher durability

Project Approach

Proposed Approach for this project includes the following

- Electromagnetic design space evaluation: Identify an appropriate motor topology with in the suitable maximum fundamental frequency, winding architecture, materials, and key dimensions while applying assumptions, such as,
 - Segmented stator for higher slot fill factor
 - Slot-pole selection for maximum fundamental frequency to 2000 kHz
 - Low core losses by using high Silicon steel at high frequencies
 - Move loss density from core to copper losses
- Thermal management: Co-design methodology implemented to assess down-select EM configurations to evaluate the power density & cost
- Sectional stator prototype during BP-2 to reduce key in-slot cooling risks

Project Timeline & Milestones

Project Timeline

Task#	Task Description	2	019-0	24	2	020-0	21	2	020-0	22	2	020-0)3	2	020-C	24	2	021-0	21	2	021-0	22	2	021-0	23	20)21-C)4
Task-1	Specification Definition																											
Task-2	Conceptual Design																											
Task-3	Preliminary Design																											
Task-4	Detailed Design & Drawings																											
Task-5	Prototyope Building																											
Task-6	Assembly & Testing														(Go/N	lo-G	О										
Task-7	Documentation & Reporting																											
Task-8	Program Management																											

- Delays in contract negotiations along with personal end of year vacations delayed the start of the project
- BP-1 Milestone: Preliminary design (125 kW) with its performance variables compared with target metrics – Due end of Sept 2020
- BP-1 Milestone: Detailed sectional stator with in-slot cooling Due end of Dec 2020 Go/No-Go Review
- BP-2 Milestone: Build, test and validate sectional stator to validate in-slot cooling as function of current density – Due Dec 2021

Project Milestones & Status

Milestone	Milestone	Type	Description
#	Winestone	Турс	Description
1.1	Target performance metrics	Technical	UTRC in collaboration with John Deere shall develop a comprehensive target performance metric to be achieved during the duration of the proposed project by month-1
2.1	Identify optimal operating speed and thermal management approach	Technical	UTRC team shall develop conceptual design of the motor and identify optimal operating speed (> 20,000 RPM) and suitable cooling mechanism by month-4
3.1	Preliminary design meeting target performance specifications	Technical	Preliminary density of the in-slot cooled 125kW motor with its performance comparison against target power density of 50 kW/l and cost target of \$6/kW by month-12
4.1	Detailed design drawings for sectional stator	Technical& Go/No Go	Detailed design and drawings for a sectional prototype with in-slot cooling to validate slot fill factor and in-slot cooling performance by month-15. This is also a Go/No-Go decision point for the proposed project
6.1	Experimental validation	Technical	Experimental results and validation of model prediction of optimal current density for a given maximum hot spot temperature by month 23
8.1	Reporting	Technical	Quarterly and final reporting as per DOE requirements.

85% complete. Delays in contract negotiations with Deere

80% complete. Delays in project start.

Plan to Start by June 2020

Plan to Start Sept 2020

Accomplishments Till Date

Electric Machine Design

- Evaluated the design space for two different operating speeds (20,000 RPM, 24,000 RPM)
- Key machine parameters such as machine OD, current density and slot fill factor is considering for high level design space
- For each key parameter space, design optimization of in-plane motor parameters is performed to capture the optimal design with highest volumetric power density
- Down-selected the design space for thermal modeling and evaluation

Thermal Management

- Capture each down-select design and performed in-plane, in-slot thermal model to estimate the hot spot temperatures with and without in-slot embedded cooling channel
- Provide feedback to EM team to capture the optimal slot current density, fill factor and stator OD

Motor Design Accomplishments

Stator Configurations Considered

Select Slot-Pole Configurations

Frequency	2000	Hz							
Speed	Poles	Winding Type							
[RPM]	[-]	[-] Concentrated Distribu							
20000	12	Not Feasible	Feasible, tooth saturation						
24000	10	Feasible	Feasible, good option						
30000	8	Low Winding Factor	Feasible, good option						
40000	6	Unbalanced Forces	Feasible, Thick Backiron						

Speed	20000	RPM							
Frequency	Poles	Winding Type							
[Hz]	[-]	Concentrated	Distributed						
2000	12	Not Feasible	Feasible, tooth saturation						
1666.667	10	Feasible	Feasible, good option						
1333.333	8	Low Winding Factor	Feasible, good option						
1000	6	Unbalanced Forces	Feasible, Thick Backiron						

Two different winding patterns were considered. But concentrated winding design space was explored first

0.625 0.750 0.875 1.000

Stator OD [p.u]

- Combined current density and fill factor for reduced design parameters
- Design space exploration was performed at 20kRPM and 24kRPM
- Select design meeting the target power density were down-selected to evaluate the thermal performance

0.500 0.625 0.750 0.875 1.000

Stator OD [p.u]

Thermal Modeling Accomplishments

- Down-select design from EM design exploration were then considered for inslot 2d modeling
- Thermal loads in the stator are copper and core losses
- Flow channel geometry for maximizing current density and heat transfer
 - Careful considerations for heat transfer coefficient determination¹
 - Correlation reported in literature considered and modified

2D FEA model

- Thermal model developed using a FEA tool (COMSOL)
- Heat transfer in channel specified as a lumped heat transfer co-efficient
 - Coolant: 50/50 EGW at 50 °C
- Flow rates calculated for restricting temperature rise in coolant ~ 10 °C
- Uniform flow distribution in channels assumed
- Winding thermal conductivity ~ used conservative estimates as reported in literature²

Domain for

Thermal Analysis

Electric Motor CAD from EM analysis

Cooling

Ref:

- 1. McHale, John P. and Garimella, Suresh V., "Heat Transfer in Trapezoidal Microchannels of Various Aspect Ratios" (2010). Birck and NCN Publications. Paper 1490
- 2. L. Siesing, A. Reinap and M. Andersson, "Thermal properties on high fill factor electrical windings: Infiltrated vs non infiltrated," 2014 International Conference on Electrical Machines (ICEM), Berlin, 2014, pp. 2218-2223.

Summary / Future Work during FY2020

- Complete the design space exploration for distributed winding architectures
- Evaluate the down-select design with thermal modeling and identify best suitable architectures based on thermal management solution
- Finalize the slot fill factor, current density and stator outer diameter for the conceptual design down-select
- Detailed understanding of thermal models for flow and heat transfer in unconventional channel geometries as applicable for the motor to maximized heat transfer performance
- Continue with header topology optimization exercise focusing on flow parameter optimization and fabrication
- Explore material for header and embedded cooling channel materials
- Initiate preliminary design by performing refinements considering the multi-physics aspects
- Perform detailed design for sectional stator and prepare for Go/No-Go review meeting