

* Subtask 4B4 under the Powertrain Materials Core Program (PMCP)

Charles E.A. Finney (PI)

Email: <u>finneyc@ornl.gov</u> Phone: 865-341-1243

Other contributors:

Zachary G. Mills, Flavio Dal Forno Chuahy, J. Allen Haynes

Oak Ridge National Laboratory

2020 U.S. DOE Vehicle Technologies Office Annual Merit Review

June 4, 2020

Project ID: mat186

ORNL is managed by UT-Battelle, LLC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Program Overview: VTO Powertrain Materials Core Program

Timeline/Budget

- Lab Call Award: July 2018
- Budget: \$30M/5 years
- Program Start: Oct 2018
- Program End: Sept 2023
- 30% Complete

Barriers

- Increasing engine power densities & higher efficiency engines; resulting in increasingly extreme materials demands (increased pressure and/or temperature)
- Reducing emissions in ICEs (by elevating engine efficiency)
- Affordability of advanced engine materials & components
- Accelerating development time of advanced materials
- Scaling new materials technologies to commercialization

FY20 Program Research Thrusts	FY20 Budget	Participating Labs	Partners	
1. Cost Effective LW High Temp Engine Alloys	\$1.05M	ORNL	 Program Lead Lab Oak Ridge National Lab (ORNL) Program Partner Labs 	
2. Cost Effective Higher Temp Engine Alloys	\$1.525M	ORNL, PNNL		
3. Additive Manufacturing of Powertrain Alloys	\$1.075M	ORNL		
4A. Advanced Characterization	\$1.025M	ORNL, PNNL, ANL	 Pacific Northwest National Lab (PNNL) 	
4B. Advanced Computation	\$0.60M	ORNL	 Argonne National Lab (ANL) 	
5. Exploratory Research: Emerging Technologies	\$0.75M	ORNL, PNNL, ANL		

Program structure includes three alloy development thrusts (1-3), a foundational support thrust (4), and a thrust for one-year exploratory projects (5).

<u>Project</u> Overview: Subtask 4B4 (Modeling of Light-Duty [LD] Engines)

Timeline/Budget

- Project start: Oct 2019
- Project end: Sep 2022
- Percent complete: 22%
- Subtask 4B4 Budget
 - FY19: \$0k

National Laboratory

RESEARCH CENTER

- FY20: \$150k

Barriers

- Need prediction of internal combustion engine (ICE) operating conditions as engine power densities further increase.
- Need prediction of effects of future, higher-efficiency engine combustion regimes on materials in specific components and definition of the set of needed materials properties.

Thrust 4: Tasks/Subtasks	Lab	PI(s)	FY19	FY20		
Task 4A: Advanced Characterization						
4A1: Advanced Characterization	ORNL	Watkins	\$450k	\$425k		
4A2: Advanced Characterization	ANL	Singh	\$300k	\$300k		
4A3: Advanced Characterization	PNNL	Devaraj	\$300K	\$300k		
Task 4B: Advanced Computation						
4B1 – 3: Computational Materials	ORNL	Shin	\$450k	\$450k		
4B4. Modeling of LD Engines	ORNL	Finney	0	\$150k		

Partners

- 4B4 partners
 - Convergent Science, Inc. (software)
 - Partnership on Advanced Combustion Engines (PACE) – DOE Vehicle Technologies Office

Motivation

- Light-duty engines are increasingly stressed
 - <u>Causes</u>: Increased specific output (torque, power etc) via downsizing/lightweighting
 - <u>Effects</u>: Higher pressures & temperatures \rightarrow nearing materials temperature limits now
- New materials will enable operation at higher temperatures
 - Reduce need for protective enrichment (adding extra fuel to cool components)
 - Enable further downsizing
 - Permit selective cooling to optimize engine thermal management & efficiency
- Need better understanding of future operating environment to balance efficiency and lightweighting

After Splitter D, Pawlowski A, Wagner R (2016). Frontiers in Mechanical Engineering 1: 16. DOI <u>https://doi.org/10.3389/fmech.2015.00016</u>.

Milestones

Milestone	Description	Due date	Status
Q1	Construct LNF engine system model in GT-Power integrating scanned geometries for heat-transfer modeling	December 31	COMPLETE
Q2	Construct combustion model in CONVERGE CFD integrating scanned geometries for heat-transfer modeling	March 31	COMPLETE
Q3	Construct finite-element (FE) model in ANSYS using refined scanned geometries with CFD predicted heat fluxes for thermal loading and predicted pressures for mechanical loading	June 30	ON TRACK
Q4 Complete simulations for validated combustion model and refined FE model at a baseline and increased specific output condition		September 30	ON TRACK

Project objectives

DEFINE FUTURE CONDITIONS

Estimate thermal environment of cylinder materials (valves, piston, head) of representative light-duty engines at increased specific output

DEFINE MATERIALS PROPERTIES

Estimate required materials properties at future operating conditions

LEVERAGE DOE RESEARCH

Utilize and integrate with ongoing activities in PMCP* & PACE**

* Propulsion Materials Core Program, DOE Vehicle Technologies Office

** Partnership on Advanced Combustion Engines, DOE Vehicle Technologies Office

ADVANCE STATE OF THE ART

Make results, methodology, and data available publicly to further the industrial state of the art & help define relevant targets

This project integrates several modeling approaches and objectives

SCOPING STUDY

Background study to explore operation limits and strategies enabled by higher-temperature materials*

How would better materials enable improved engine efficiency & where is the most opportunity?

Eliminate protective enrichment Enable further downsizing Explore selective cooling strategies

INTEGRATED COMBUSTION AND STRUCTURAL STUDY

Combustion modeling to define thermal environment experienced by light-duty engine components at projected future operating conditions

Finite element modeling to predict materials stresses, strains etc based on combustion modeling of projected future operating conditions

Will new fuel formulations require new materials?

Both studies target modern, production passenger engines run at ORNL & use materials data measured at ORNL.

This study follows methodology developed in the materials program for heavy-duty engines

- A recent, prior project explored the effects of increasing power density by 25–50%
- Two industry-standard materials were evaluated to develop methodology: gray cast iron & Compacted Graphite Iron (CGI-450)
- ORNL measured materials properties for CGI-450, extending into higher temperatures than publicly available
- A combined modeling approach used computational fluid dynamics and finite element analysis to estimate the thermal and stress-strain-creep environment
- Results help define roadmap for materials needed for future engine operation

TRANSPORTATION

National Laboratory | RESEARCH CENTER

EV: Exhaust valve | IV: Intake Valve | FI: Fuel Injector

APPROACH

Scoping study: explore benefits of different operating strategies enabled by higher-temperature materials

Experimental engine at ORNL for validation data

- 2013 Ford Ecoboost 1.6L 4cylinder DISI engine
- Single-stage turbocharger
 - Boost levels throttled with wastegate changes
- Stock OEM piston with 9.35:1 compression ratio
- Standard E10 fuel blend with RON of 91
- Exhaust temperatures limited to ~900°C, controlled by enrichment

9 **CAK RIDGE** NATIONAL TRANSPORTATION RESEARCH CENTER

Numerical model

- GT-Power engine model
 - Base model from Co-Optima
 - 1-D thermal solver for materials temperatures
 - ORNL materials data
- Boost pressures from experimental engine runs
- Turbine maps from OEM
- Combustion & temperature calibrated from experiment
- Knock model used to explore practical operating limits with this fuel

Iterative combustion & mechanical modeling

Objective: estimate thermal environment of cylinder materials (valves, piston, head) of engine at increased specific output & define required materials properties

Approach: similar to heavy-duty study from prior years

- Experimental approach:
 - Production GM LNF DISI engine at ORNL
 - Design data: high-resolution scans of production head, valves, and piston used for geometry
 - Validation data: ORNL data from PACE multiple load conditions at 2000 RPM; custom validation data to be taken April—May 2020
- Computational approach:
 - Combustion: GT-Power (0-1D treatment for boundary conditions) and CONVERGE CFD (high-fidelity 3D for spatially detailed heat-flux maps); conjugate heat transfer for accurate materials temperatures
 - Structural: ANSYS

Fuel enrichment is used at high engine loads to protect parts

- Enrichment: adding extra fuel in order to reduce exhaust gas temperatures to protect materials from thermal damage
 - Exhaust valves & turbine inlet of primary concern
- Effects of enrichment:

 $-\Delta T_{exhaust valve} = -19^{\circ}C, \Delta T_{turbine inlet} = -50^{\circ}C$ at 3000 RPM

 $-\Delta T_{exhaust valve} = -46^{\circ}C, \Delta T_{turbine inlet} = -110^{\circ}C \text{ at } 5000 \text{ RPM}$

Enrichment is one strategy to reduce materials temperatures in modern engines at high loads

Temperature [°C]

RESULTS FROM SCOPING STUDY TECHNICAL ACCOMPLISHMENT

However, enrichment carries a significant fuel penalty

- Large decreases in efficiency are predicted
 - Brake thermal efficiency drops by 1.9% at 3000 RPM, 4.5% at 5000 RPM
 - ->10% fuel unburned in worst-case scenario
- Enrichment observed at >75 MPH in some vehicles
- Current engine downsizing trends may necessitate increased enrichment because of the thermal load on materials

Reducing need for protective enrichment with superior engine materials can avoid significant in-use fuel-efficiency and any pollutant emissions penalties

ational Laboratory

ECHNICAL ACCOMPLISHMENT RESULTS FROM SCOPING STUDY

Downsizing provides some efficiency gain but results in higher materials temperatures

- Power held constant while reducing swept volume
 - − Stroke: 81.3 \rightarrow 75 mm, Bore: 79 \rightarrow 75 mm
 - Power maintained with boost (turbocharging)
- ~1% increase in BTE at 5000 RPM from lower frictional losses
- Knock avoidance effects (delaying spark timing):
 - ~2% & ~1% decrease in BTE at 2000 & 3000 RPM
 - Increased exhaust temperatures
 - Turbine inlet temperature increases to 867 °C at 2000 RPM, 937 °C at 3000 RPM, and 1037 °C at 5000 RPM

Desired higher power densities will increase materials temperatures significantly

TECHNICAL PROGRESS HIGH-FIDELITY STUDY

High-resolution scans have been imported into the CFD and FEA models

Some surfaces in the scanned parts need smoothing & simplification for FEA model. Component surfaces have been separated and tagged for CFD model.

TECHNICAL PROGRESS HIGH-FIDELITY STUDY

Solid-model simplification for finite element analysis

Physically scanned surface data have been converted to a solid model & are being simplified to reduce computational burden, ease meshing, and improve calculation homogeneity and reliability.

Current status

Source Antional Laboratory

Task	Status	Notes/outcomes		
LD scoping study (Ecoboost)	COMPLETE	Thermodynamic insights		
LD model setup (LNF)	COMPLETE	GT-Power		
Q1 Milestone	COMPLETE	GT-Power model setup		
CFD model setup (LNF)	COMPLETE	CONVERGE CFD		
Q2 Milestone	COMPLETE	CONVERGE model setup		
LD model validation (LNF)	IN PROGRESS	Awaiting validation data from PACE tasks		
LD model predictions (LNF)	FUTURE	Inputs to CFD model		
CFD model validation	IN PROGRESS	Awaiting validation data & LD model inputs		
CFD model predictions	FUTURE	Inputs to FEA model		
FEA geometry conditioning	IN PROGRESS			
FEA model setup & verification	FUTURE			
Q3 milestone	ON TRACK	ANSYS model setup		
FEA model predictions	FUTURE	Insights into materials thermal/stress environment		
Q4 milestone	ON TRACK	Combined models benchmarking		

LD = low-dimensional (i.e., GT-Power) CFD = Computational Fluid Dynamics (i.e., CONVERGE CFD) FEA = Finite Element Analysis (i.e., ANSYS)

Proposed future work

- Complete combustion modeling (FY2020)
 - Validate with available data
 - Extend to other speed-load conditions, focusing on more extreme combustion than currently practiced
- Complete & exercise structural model (FY2020–21)
 - Focus on spatially varying temperature & stress profiles
 - Provide quantitative guidance for materials research / selection of targets

Apply methodology to neutronic engine

- Engine currently under design & construction will use neutron techniques to measure stresses in situ in an operating engine
- Will be the first opportunity for comprehensive validation of a combined CFD & FEA approach

Responses to prior-year comments

New start — no prior-year review

Collaborations

Model development

- Convergent Science, Inc. helped with initial model setup
- Two OEMs provided design and/or operating data
- Derek Splitter (ORNL/DOE VTO project) provided scan data of LNF head, valves, and piston
- Amit Shyam (ORNL/DOE VTO project) provided light-duty alloy thermophysical data

Validation data

- Scott Sluder (ORNL/DOE VTO project) provided engine data (Co-Optima)
- Derek Splitter (ORNL/DOE VTO project) is providing validation data (PACE)

Results are being shared with multiple PACE/PMCP projects.

Summary

Relevance

 Directly addressing materials barriers to enable advanced engine and powertrain systems for propulsion applications

Approach

- Apply computational methods linking experiments and numerical simulations to accelerate materials selection and development
- Extend capabilities to address problems using novel approaches

Accomplishments

• Progressed on state-of-the-art co-simulation of combustion and materials thermal properties

Collaborations

Sharing design & materials properties data with engine modeling community

Future work

• Define materials properties needed in future LD engine operation to meet lifespan of needs within constraints

