

Low Cost Manufacturing of Advanced Silicon-Based Anode Materials

June 11, 2019

Avery J. Sakshaug, Abirami Dhanabalan, Chris Timmons, Aaron Feaver, Henry R. Costantino (PI)

Project ID: BAT268

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start Date: January 2016

End Date: September 2018

• Percent Complete: 100%

Budget

Total Project Funding

DOE: \$2.81M

• G14: \$1.23M

Funding received in FY 2017

Funding for FY 2018-19

No-cost extension

Barriers

- Cost: Anode materials that contribute towards the DOE target of \$125/kWh
- Performance: Silicon based anodes to improve Li-ion energy density for vehicles
- Life: Maintain current cycle life of graphite anode Li-ion batteries

Partners

Relevance

- Cost: Current Li-ion battery cost structure will not enable widespread use of battery electric vehicles (BEV) or plug-in hybrid electric vehicles (PHEV)
 - Current technology trajectory will increase performance, but also increase cost
- Performance: BEV and PHEV range needs to be extended by increasing Wh/kg and Wh/L and maintaining power capability
- Cycle Life: Batteries with short life time i.e. 2-3 years can be tolerated in consumer electronics but not vehicles
- Group14 targets:
 - Reduce cost of current graphite based anodes
 - Improve capacity increase EV range
 - Maintain cycle life of current batteries

Milestones

Year 1

Milestone	Type / Timing	Description
Supplier Identification	Technical / Q1	Identify minimum 2 suppliers for each new feedstock material required for Si-C composite. Materials must be available at full scale volume supporting < \$125/kWh.
Sample Down-select	Technical / Q2	Down select to 3 lab-scale silicon samples for performance and cost
Synthesize Si-C	Technical / Q3	Synthesize 1x10g Si-C with 1000 mAh/g
Synthesize Si-C	Go/No-Go / Q4	Analysis indicates that the synthesized 1x1g Si-C with 1000 mAh/g is predicted to achieve 500 cycles at a projected cost of <\$125/kWh

Year 2 / No-cost Extension Period

Milestone	Туре	Description
Synthesize Si-C 1000 cycles	Technical / Q2	Synthesize 1x1g Si-C with 1000 mAh/g; predicted 1000 cycles; < \$125/kWh projected cost
Performance Validation	Technical / Q3	Validate performance of at least one pilot-scale-synthesized material in the lab
Commission Equipment	Technical / No Cost Extension Period	Complete installation and commissioning of all new process equipment
Synthesis with Demo	Technical / No Cost Extension Period	The synthesis of 1 kg completes a demonstration 1000 mAh/g and predicted 1000 cycles at < \$125/kWh at full scale volume

Approach / Strategy

Go / No-Go Cost / Performance

- Leverage EnerG2 carbon expertise in carbon to create an ideal silicon support matrix material
- Develop and implement low cost silicon synthesis process compatible with the carbon platform
- Demonstrate success of the approach in full cell LIBs
- Manufacture at pilot scale for qualification with LIB customers using low cost process

Technical Accomplishments: 3rd Party FCE Data for Pilot-Scale Si-C

Sample	Initial Charge Capacity (mAh/g)	Initial Discharge Capacity (mAh/g)	Initial Coulombic Efficiency (%)	Calculated Discharge Capacity [no dilution] (mAh/g)	Calculated Initial Coulombic Efficiency [no dilution] (mAh/g)
1	604	547	90.5	1918	88.7
2	604	556	92.0	2092	92.1

Data for half cell coin cells, anode ~12% Si-C diluted in graphite, counter electrode Li metal, discharge: 0.1 C CC-CV 5 mV 0.005 C cutoff, charge: 0.1 C CC 1.5V cutoff.

3rd Party Data for G14's Pilot-Scale Si-C: >800 Cycle Stability

Average data for two full cell pouch cells, anode ~12% Si-C diluted in graphite, NMC 622 cathode, cycled at 1C rate between 4.3V (CV charge 0.05C cut-off) and 3.0 V, electrolyte 1M LiPF6 in EC:EMC:DEC = 3:5:2 v/v% + Additive.

3rd Party Data for G14's Pilot-Scale Si-C: Confirmation of High FCE

Swagelok half-cell, working electrode 90/5/5 AM/C/SBR-CMC, Counter electrode and reference: Li metal, electrolyte: 1M LiPF6 in EC/DEC 3:7 with 10% FEC, formation: CC charge-discharge at C/25 between 5 mV and 1.5V.

Technical Accomplishments: Internal Confirmation of High FCE

Anode consists of 90% active (graphite +Si-C or SiOx), 5% CE, 5% binder. Cells tested in half-cell configuration with lithium metal counter electrode, 1M LiPF6 in EC:DEC (2:1 w/w)+10%FEC, cycled at C/10 rate between 1.5V and 5mV (CV cut-off at 5mV to C/20).

BatPaC Cost Modeling Consistent with Achieving Project Goal of <\$125/kWh

Si-C = \$40/kg, Graphite =\$12.50						
Si-C %	Battery systems /yr					
in anode	100k	200k				
0	133 \$/kWh	126 \$/kWh				
20	129 \$/kWh	122 \$/kWh				
30	128 \$/kWh	121 \$/kWh				

Cost model using default values provided in the BatPaC 2018 model (v.3): 88 kWh battery pack for 300 mi range vehicle, Si-C cost of \$40/kg and number of battery systems manufactured per year: 200,000.

Collaboration and Coordination with Other Institutions

- University of Washington Subcontract
- Pauzauskie Lab: Funded graduate student Matt Lim
 - Material modeling
 - Advanced characterization

- PNNL Subcontract
- Chongmin Wang Group: Funded post-doc
 - In situ TEM of Silicon Expansion
 - SAED
 - Advanced spectroscopy

Market Impact and Sustainability

- Group14 Si-C is specifically addressing the objective of enabling EV cost parity with ICE vehicles
 - Enables >20% volumetric energy density improvement over convention graphite-containing Li-ion batteries
 - Potentially ~ ½ the cost of graphite on a \$/Ah basis
- Performance of Si-C produced at Group14's pilot-scale manufacturing facility is validated by various 3rd parties
- Group14 Si-C is a "drop in" that can be readily blended with graphite, and can be easily integrated into current commercial anode and battery manufacturing lines

Summary

- Group14 has developed a highly stable, low cost Si-C anode material
- Electrochemical performance of material produced at pilot scale (~kg) completes a demonstration 1000 mAh/g and predicted 1000 cycles
 - In-house: >600 cycles, >1000 cycles with pre-lithiation
 - 3rd party: >800 cycles, further analyses ongoing
- BatPaC modeling consistent with achieving < \$125/kWh at full scale volume