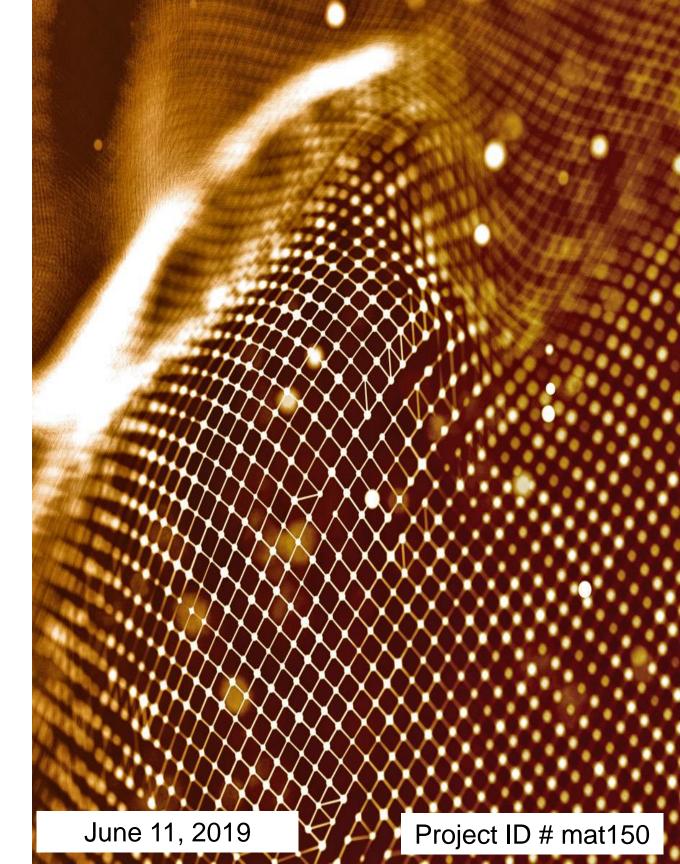


Low-cost Corrosion Protection for Magnesium


Aashish Rohatgi

aashish.rohatgi@pnnl.gov

Saumyadeep Jana

Pacific Northwest National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>Timeline</u>

- Start: January 2019
- Finish: January 2020
- > % Complete ~25%

Budget

- Total project funding
 - DOE: \$ 350K
- Funding since inception
 - \$ 350K
- Future funds anticipated
 - \$ 0

Technology Gaps/Barriers

- Lack of corrosion resistant magnesium (Mg) alloys
- Lack of cost-effective, durable protective coatings
- Current technology using organic coatings require multiple steps and chemical baths to improve adhesion and porosity-free coatings
 - Environmental concerns

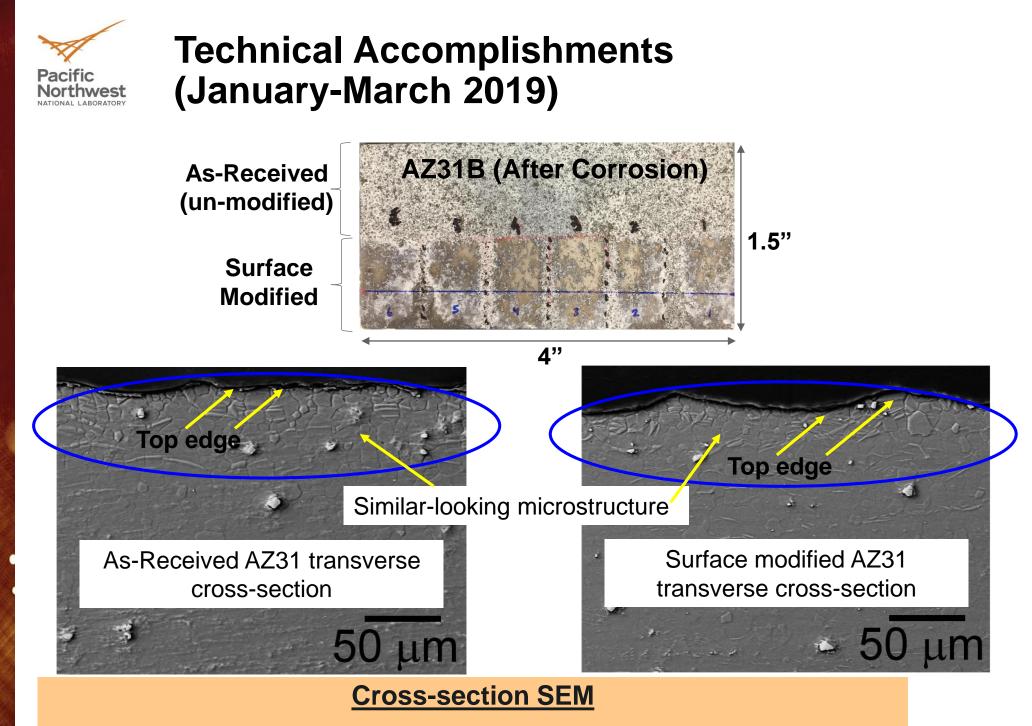
Partners

- University of Oregon
- University of Iowa

Relevance/Objective

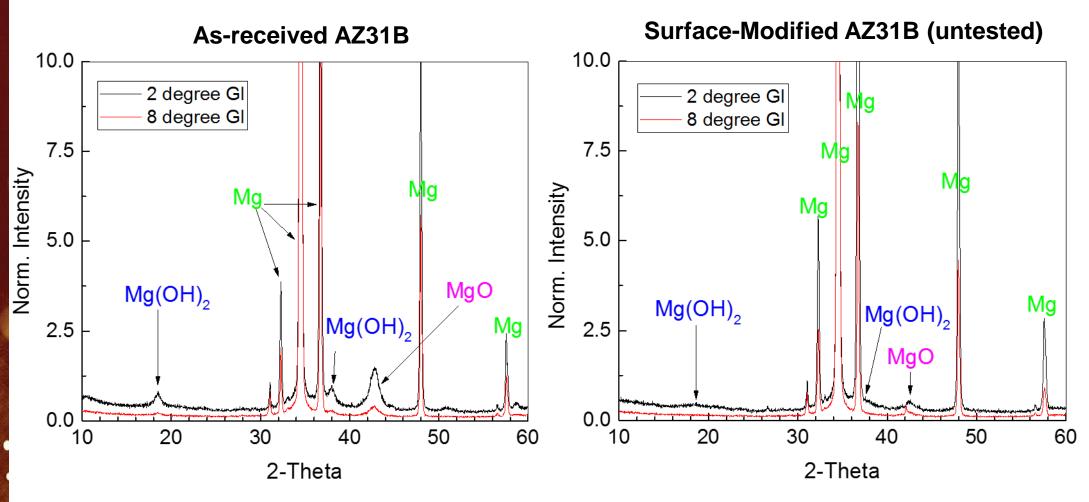
- Corrosion susceptibility limits/prevents greater use of Mg alloys in automotive sector despite its lightweighting potential
- Organic coatings offer corrosion protection but have some challenges:
 - Poor adhesion in the absence of pre-treatment
 - Application of multiple layers to form a porosity-free coating
 - Chemical baths used for coatings are an environmental concern
- Alternative corrosion protection schemes are needed that offer improved corrosion resistance in Mg alloys and overcome the challenges of existing coatings-based approaches
 - PNNL is investigating surface modification approaches for corrosion protection of Mg sheet alloys (AZ31)

0


Project Milestones

Milestone	Date	Description
M1	03/31/2019	Fabricate surface-modified Mg alloy test coupons
M2	06/30/2019	Perform cross-sectional microstructural characterization of the processed surface to describe elemental and phase distribution
M 3	09/30/2019	Compare mass-loss of un-processed and processed samples tested using ASTM B117 test method
M4	12/30/2019	Compare mass-loss of surface-modified samples, prepared with various methods, after testing them using ASTM B117 test method

- Material: AZ31 Mg sheet
- Surface Modification: Process in development
 - Laser surface treatment
 - Spot size 500 microns
 - Pulse energy ~100, ~200 and ~300 mJ \rightarrow ~1, ~2 and ~3W, respectively
- <u>Microstructural Characterization</u>: As-received Mg sheets vs. surface modified sheets using:
 - SEM (Scanning Electron Microscope)
 - GI-XRD (Glancing Incidence X-ray Diffraction)
 - EBSD (Electron Back-scatter Diffraction)
 - TEM (Transmission Electron Microscope)
- Corrosion Characterization
 - ASTM B117 salt fog test for 1500 hours (~ 2 months)
 - Electrochemical tests
- <u>Develop and Test Hypothesis</u> to identify mechanism(s) behind improved corrosion resistance


- Apparent absence of surface coating in surface-modified sample
- Similar through-thickness microstructure in as-received and surface-modified samples

6

Technical Accomplishments

Glancing Incidence (GI)-XRD

Pacific

- <u>Presence</u> of magnesium hydroxide (Mg(OH)₂ / oxide (MgO) peaks \rightarrow Corrosion build-up due to atmospheric corrosion
- <u>Absence</u> of magnesium hydroxide (Mg(OH)₂ / oxide (MgO) peaks → Improved resistance to atmospheric corrosion
- GI-XRD confirms improved atmospheric corrosion resistance in surface-modified AZ31B sheet

7

Response to Reviewer's Comments

• This project is being reviewed for the first time

Collaboration and Coordination

- University of Oregon
 - Electrochemical testing
- University of Iowa
 - Surface process development

Remaining Challenges and Barriers

- Perform detailed microstructural characterization of surface modified AZ31 sheets before and after corrosion testing
 - TEM
 - XPS (X-ray photoelectron spectroscopy)
- Electrochemical testing of surface modified Mg sheets
- Identify the responsible mechanism for improved corrosion behavior in surface modified Mg sheets

Proposed Future Work

- Identify Mechanism(s) of Corrosion Mitigation:
 - Detailed microstructural characterization
 - Effect of alloying elements, second phase particles
 - Advanced electrochemical testing to correlate microstructure with corrosion behavior
 - In-situ imaging studies
- Work with industry partners:
 - Different Mg-alloy systems
 - Avoidance of pre-treatment step
 - Applicability to castings

Any proposed future work is subject to change based on funding levels

- Goal of this project is to develop surface modification techniques to improve corrosion resistance of Mg alloys, without the use of conventional chemical baths
 - Simplify corrosion protection package
 - Address environmental concerns
- Initial experimental results confirm that the as-surfacemodified AZ31 Mg showed qualitatively greater resistance to atmospheric oxidation relative to un-modified AZ31 sheet

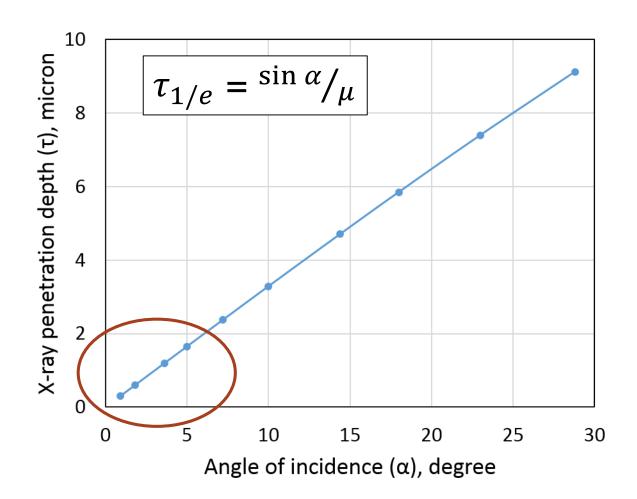
BACKUP SLIDES

Low-cost Corrosion Protection for Magnesium

Aashish Rohatgi

aashish.rohatgi@pnnl.gov Saumyadeep Jana Pacific Northwest National Laboratory

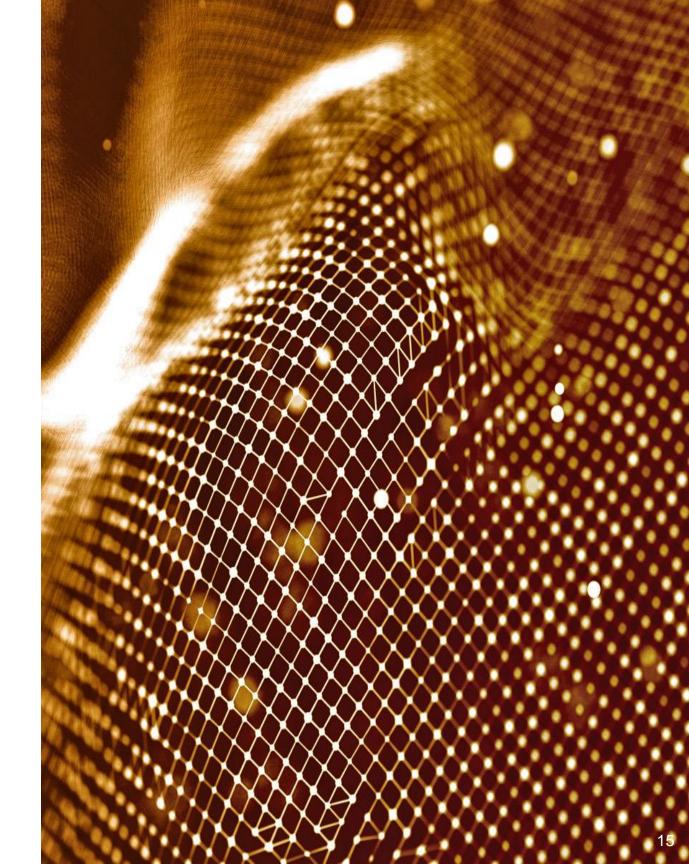
This presentation does not contain any proprietary, confidential, or otherwise restricted information


June 11, 2019

Project ID # mat150

Glancing Incidence(GI)-XRD

- The incidence X-ray beam enters the sample at a very low angle of incidence (1-5°), and thus the structural information contained in the resulting diffractogram stem primarily from the top surface region (tens to hundreds of nm thickness)
- For the current study, we have applied GI-XRD in order to investigate the very top surface region in processed Mg alloy to find out if any new phase is forming that provides the improved corrosion performance


 $\tau_{1/e}$ = Characteristic distance for which the x-ray beam is attenuated to 1/e of its initial value α = Angle of incidence μ = X-ray attenuation coefficient

For small angle of incidence, Xray penetration depth remains limited to hundreds of nm to a few microns, which is useful for surface characterization

0

Thank you

