

Long-Range Battery Electric Vehicle with Megawatt Wireless Charging

Project ID: elt262

Brian Lindgren
Kenworth Truck Company

DOE Vehicle Technologies Program 2020 Annual Merit Review

Budget

Total Project Funding: \$8M

• DOE share: \$5M

Partner Cost Share: \$3M

Timeline

Start Date: 1 Oct 2019End Date: 12 Dec 2022

• 13% Complete

Problem Statement

Barriers to broad acceptance of battery-electric power for heavy trucks:

- Range
 Typical today is 100 miles
- Re-Charge Time
 Typical today is 2-10 hours

This project will research, develop and demonstrate a Class 8 tractor capable of two-shift operation, exceeding 400 miles per day. The tractor will have range of at least 170 miles and will be recharged in 30 minutes.

Project Partners

A strong and diverse team has been assembled:

- Kenworth Truck Company -Heavy Truck OEM
- UPS Global Transportation & Logistics Fleet
- Utah State University Academic Institution with Extensive Wireless Charging Expertise
- WAVE Technology Startup Producing
 & Deploying Wireless Chargers For
 Heavy Vehicles
- Seattle City Light Local Government-Owned Utility
- Portland General Electric Local Public Utility
- elQ Mobility Technology Startup Working To Simplify Fleet Electrification

Project Timeline and Milestones

2019	2020				2021				2022			
Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
7	Route	Data Obta	ained									
	7	Battery	Size Estal	olished								
		7	Design	Paramete	rs for Cha	rger Single	e-Stage AC	C-AC Conv	erter Esta	blished		
			7	Site In	frastructu	re Plans Co	omplete					
				7	Go/No-	Go: Proof	of-Conce	pt Charge	r Demons	trated at	250 kW	
					*	Chassis	Layout De	sign Com	plete			
						***	Chargin	g Site Equ	ipment De	sign Com	plete	
		Key	Charger (Componer	nts Design	ed and Va	lidated 7	*				
					Grid Elect	rical Powe	r Supply I	n Place 🄰	(
		Demons	trate Meg	awatt Wir	eless Chai	ger Opera	ation Off-\	/ehicle 🤰	C			
					Battery-I	Electric Tra	actor is Bu	ilt and Op	erable 📩			
				Demonst	rate Mega	awatt Wire	eless Char	ger On Ve	hicle at U	PS Site 🔰		
								erations E				
			Oper	ate the V	ehicle and						1 7	nonths ★
												se Plan 🌟
					11000	co i iliai il	50000	, Data Aire	a 7 ((101 y 515)	Ориниго		C i idii

Route Analysis:

- Data from Seattle to Portland in rangeextended electric tractor-trailer
- Power requirements for the traction motor system plus all accessory drives such as cooling pumps and fans, power steering, air compressor, HVAC, etc.

Energy Storage Required:

 450 kW-hrs of energy will be consumed on each one-way between Seattle & Portland

Battery Selection:

- 660 kW-hrs capacity
- Capable of 1.5C charging rate at 1,000 kW
- NMC chemistry

Progress

Magnetics & Electronics Design and Simulation:

- Significant simulation and investigation
- Design meets vehicle parameters and charging requirement
- ANSYS simulation results yield path forward for a scaled prototype pad and shield
- Development and testing plans complete
- Initial weight and space calculations complete

Chassis Layout Design:

- Preliminary layout is complete
- Selected components all can fit on chassis
- Size and Weight requirements can be met
- Shielding requirements can be met
- Air gap requirement to fixed charger can be met

Magnetic Field Plot Showing Leakage Meets ICNRP Regulations

Future Research

- Explore the fleet impact and grid impact of large quantities of these trucks using chargers of this type.
- Ensure occupant and bystander safety during charging, and explore the trade-offs of field-shaping to reduce scatter vs mechanical shielding.
- Understand the thermal management needs of the battery system and the charging system across a spectrum of use cases.
- Explore the possibility of high-frequency interference from the charging system on vehicle electronic sub-systems, and means of mitigating the effects.