

Lithium Source For High Performance Li-ion Cells

Keith D. Kepler Farasis Energy, Inc. 5-14-2012

This presentation does not contain any proprietary, confidential or otherwise restricted information

Project ID: #ES140

Overview

Timeline

• Start Date: July, 2010

• End Date: June, 2012

• 90% Completed

Budget

- Phase II SBIR
- Total Project Funding
 - \$1M

• 2011 Funding: \$460,000

• 2012 Funding: \$220,000

Barriers

- Low Energy Density
- Cost
- Abuse tolerance limitations

Partners

• Argonne National Laboratory

Relevance

- New cathode and anode electrodes are required to improve the energy density of Li-ion cells for transportation technologies.
- The cost of Li-ion systems for transportation applications needs to be reduced.
- The safety of Li-ion systems utilizing high energy density cells needs to be improved.
- In this work we are developing Li-ion cells utilizing promising high capacity cathode materials comprising low cost, abundant iron, vanadium or manganese oxides and a safe non-lithium anode.
- The work provides and alternative route to high-energy density cells consisting of Ni and Co based oxide by utilizing, instead, a pre-lithiation lithium iron oxide source that is implemented to load lithium in advanced anode systems.

Need for Lithium Source for Li-ion Cells

- Enable use of high capacity, low cost, charged cathodes without a lithium metal electrode.
 - Ex. Li₅FeO₄/LiV₃O₈ Cathode
 - Improved performance, safety, cost.
- Enable use of anode systems with large irreversible capacity losses (intermetallics).
 - Ex. LFO containing cathode vs. Silicon anode.
 - Improved energy density, cycle life, performance.
- Method to enable use of partially charged cathodes.
 - Ex. Li₅FeO₄/Recycled Cathode
 - Low cost, environmentally friendly.

Project Objectives

- Li-ion materials development and study.
 - Lithium Iron Oxide (lithium source)
 - Develop and scale best synthesis methods.
 - Study delithiation and degradation mechanisms of LiFeO materials.
 - Improve stability of LiFeO materials
 - Maximize utilization in Li-ion cells.
 - Lithium Vanadium Oxide
 - Improve cycle life and stability of LiV_3O_8 cathode.
- Develop three different Li-ion cell types incorporating LFO materials as a lithium source.
 - Develop optimized electrodes and cell designs
 - Build and evaluate cells based on optimized cell designs.

2011 Accomplishments

- Low cost synthesis method developed and scaled for LFO materials.
- Multiple synthesis methods evaluated for LVO materials.
- LFO degradation process characterized by Raman Spectroscopy.
- Improved stability of LFO materials to handling in manufacturing environment.
- Improved material utilization by 20%, achieving greater than 800 mAh/g
- Initiated cell development and evaluation.

Technical Approach

Li₂O (Fm-3m) (a=4.614 Å)

Li₅FeO₄ (Pbca) (a=9.218 Å; b=9.213 Å; c=9.159 Å)

Li₅FeO₄ (LFO) as a pre-lithiation precursor

Li₂O: Li - tetrahedral sites O - face-centered-cubic sites

Defect antifluorite structures

- Li₅FeO₄: $5\text{Li}_2\text{O} \bullet \text{Fe}_2\text{O}_3$ or $\text{Li}_{1.25}\text{Fe}_{0.25}\square_{0.5}\text{O}$ 5 Li per Fe atom
- Li₆MO₄ (M=Mn, Co): $3\text{Li}_2\text{O}\bullet\text{MO} \text{ or Li}_{1.5}\text{M}_{0.25}\square_{0.25}\text{O}$ 6 Li per M atom

Abundant Li in defect structure ideally provides good Li⁺ mobility

Technical Approach

Voltage Curve First Charge for LFO based Cathodes

- LFO fully charged by $\sim 4.2 \text{V}$ vs. Lithium metal at double the energy density of other high capacity cathode mateirals
- Lithium released during first charge of LFO in cathode electrode can be used as partial or only source of Lithium for Li-ion cells.

ARASIS Electrochemistry of Composite Cathode Containing Li₅FeO₄ and LiV₃O₈

Sacrificial Lithium Source Component:

First Charge LFO: $2 \operatorname{Li}_{5}\operatorname{FeO}_{4} \rightarrow 5 \operatorname{Li}_{2}O + \operatorname{Fe}_{2}O_{3}$ (first charge)

 $5 \text{ Li}_2\text{O} \rightarrow 10 \text{ Li} + 10 \text{ e-} + 5/2\text{O}_2$

(theoretical 867 mAh/g)

Reversible Active Component(s):

"Reversible" LFO: "Fe₂O₃" + Li \rightarrow "LiFe₂O₃" (rock-salt)

(theoretical 160 mAh/g)

Charged Cathode LVO: $LiV_3O_8 + 4Li \rightarrow Li_5V_3O_8$ (rock-salt)

(theoretical 372 mAh/g)

Cell Designs Utilizing Mixed LFO/LVO Cathodes

Example designs and comparison of LFO/LVO composite cathodes based on different performance parameters compared to typical LFP cathode.

Composite Cathode Designs: For Cell (Li5FeO4+LiV3O8) vs. Carbon Anode (with 5% Irreversible Loss)													
Component Data			Composite Cathode Materials										
	C1,	D1,	Li5FeO4	LiV3O8	C1,	D1,	Irreversible	C2,	D2,	Average	Wh/kg	Electrode Density	Wh/L
Materials	mAh/g	mAh/g	wt%	wt%	mAh/g	mAh/g	Loss Anode, %	mAh/g	mAh/g	Voltage, V	Cathode	est. g/cc	Cathode
Conventional													
LiFePO4	160	155			160	152	5.00%	152	152	3.5	532	3.00	1596
Theoretical (5 Li)													
LiV3O8	370	370											
Li5FeO4	860	0	31.17%	68.83%	268	255	5.00%	255	255	2.8	713	4.00	2852
Phase I Best Materials													
LiV3O8	310	325											
Li5FeO4	690	0	32.11%	67.89%	222	221	5.00%	221	221	2.8	618	4.00	2471
Phase II Best Materials													
LiV3O8	310	325											
Li5FeO4	800	0	28.97%	71.03%	232	231	5.00%	231	231	2.8	646	4.00	2585

- Potential to achieve higher energy density (Wh/kg and Wh/L) at lower voltage for increased stability.
- Phase II materials improvements have increased energy densities achievable at cell level.

Key Barriers to Address

- Maximize utilization of Lithium from LFO material.
- Impact of LFO on cathode performance including impedance and cycling.
- Stability of LFO to manufacturing conditions.

Maximize Utilization of Lithium on First Charge

Phase I investigated impact of synthesis method, charge profile, temperature and electrode formulation on utilization of LFO cathode. Maximum capacity achieved was ~ 690 mAh/g at lab scale.

 $Li_5Fe_xCo_{(1-x)}O_4$

Phase II:

- Focus on material composition, solid solutions with Li₆CoO₄, and doping of material to increase utilization.
- Developed two stage mixing and firing method for synthesis of LFO material reducing synthesis time from 72hrs to \sim 6 hrs and reducing synthesis cost.

Impact of Li/Fe Ratio on Li_{5+x}FeO₄ Material

Sample #	Туре	Reactants	Notes:	Li/Fe Ratio*
1-25-1	LFO/Li=5.0	Li2CO3+Fe2O3	800°C / ca. 140 hr / Ar	
1-25-2	LiFeO2	Li2CO3+Fe2O3	800°C / ca. 140 hr / Ar	
1-26-1	LFO/Li=5.0	LiOH-H2O+Fe2O3	800°C / ca. 140 hr / Ar	5.0
1-26-2	LFO/Li=5.5	LiOH-H2O+Fe2O3	800°C / ca. 140 hr / Ar	5.6
1-28-1	LFO/Li=5.0	LiOH-H2O+Fe2O3	Weighed, not sintered	
1-28-2	LFO/Li=5.5	LiOH-H2O+Fe2O3	Weighed, not sintered	
1-39-1	LFO/Li=6.5	LiOH-H2O+Fe2O3	800°C / ca. 25 hr / Ar	6.6
1-40-1	LFO/Li=6.5	LiOH-H2O+Fe2O3	875°C / ca. 25 hr / Ar	6.5
1-42-1	LFO/Li=7.0	LiOH-H2O+Fe2O3	800°C / ca. 25 hr / Ar	7.3
1-44-2	LFO/Li=6.0	LiOH-H2O+FeOOH	850°C / ca. 25 hr / Ar	5.7

^{*}Li/Fe ratio determined by ICP/OES analysis.

X-Ray Diffraction of LFO Materials with Different Li/Fe Ratios

Key observations: All prominent diffraction lines (Cu-k α) can be indexed to LFO. There are no discernable peak shifts or intensity variations vs. Li/Fe ratio.

Raman Spectra of LFO Materials with Different Li/Fe Ratios

- ➤ A signature Raman band for LFO is found at 656 cm⁻¹.
- ➤ The frequency of this band appears to be invariant with respect to Li/Fe ratio.

Spectra recorded using 514 nm excitation at the ANL/CNM. The samples were contained in a sealed cell with a CaF₂ window.

Raman Spectra of LFO Materials with Different Li/Fe Ratios

- \triangleright LFO lattice has very low (C₁) symmetry. Hundreds of Ramanallowed bands are predicted.
- ➤ Bands appearing in all the spectra shown to the left that are most probably attributable to LFO are indicated by a (•).
- ➤ Li₂O is detected in varying amounts in several of the samples. It appears to be present as a separate second phase—detected in some places, not in others.

The XRD patterns and Raman spectra provide no definitive indication that any of the excess Li enters the Li₅FeO₄ lattice.

Raman Spectra of Li(FeCo)O Materials with Different Fe/Co Ratios

The mixed Fe/Co phases appear to be either an LFO/LCO solid solution or LFCO crystallites with random amounts of Fe and Co (as if Fe(III) and Co(II) behave in a chemically indistinguishable manner, which is not likely).

First Charge Capacity of Li₅(FeCo)O₄ Materials

- Impact of composition on first charge capacity.
- Cobalt content exceeding 50% led to greater instability and/or self discharge
- Pure Li₆CoO₄ was found to be difficult to process into electrodes.
- Dopants can have significant impact on material utilization

Optimization of Capacity Utilization for LFO Based Materials

• Optimized dopant compositions exceed 800 mAh/g on first charge

Stability of LFO in Various Environments

Controlled environment test:

- Gauge the rate of decomposition of LFO in two types of atmospheres.
- •After five days we detected OH- (see right inset) and CO₃²⁻ in the exposed dust shield sample but no OH⁻ and no additional CO₃²⁻ in the exposed dry room sample.

LFO after 5 days in a Plexiglass dust shield with open hand ports.

LFO after 5 days in Dry Room

LFO Decomposition Products

When LFO is exposed to ambient laboratory air (presumably containing normal amounts of CO₂ and H₂O), it reacts and the light gray colored LFO turns rust red.

Raman spectroscopy shows clear evidence for formation of Li₂CO₃, as well as Fecontaining phases we have not clearly identified.

LFO Capacity vs. Atmospheric Exposure Time

- LFO/LFCO materials are stable in dry air or to typical dry room environments and to conventional Li-ion battery slurry solvents which do not impact their capacity.
- LFO/LFCO decomposition and capacity loss from long term moist air exposure affects material capacity. Electrodes were left in air for up to 24 hours before testing.
- Improvement in stability to air will lower cost of material handling/cell manufacture

Increased Stability by Doping LFO Materials

- Doping of LFO materials appears to be an approach that can significantly improve the stability of these materials to moist air over periods of 24 hours.
- Optimization of the capacity and stability is being performed to create materials that are compatible with existing manufacturing methods.

Impedance of Decomposed LFO Cathode Material

- For some applications LFO may comprise as much as 40% of the mass in the cathode laminate electrode.
- As an inactive component it is important that it should not contribute to any increase in cathode impedance after the initial formation process.
- We have performed numerous experiments and have found that the charged LFO material has low impedance and no negative impact on the active material performance.

Other Work On Project

Component Materials Development

- LiV₃O₈ Rate Capability
- Intermetallic Anodes

■ Full Cell Design and Development

- Charged Cathode/Carbon Anode Cells
- Intermetallic Anode Cells
- Recycled cathode cells.

High Capacity LiV₃O₈

Low Cost Intermetallic Anodes

Full Pouch Cells

Future Work

- Further optimization of capacity and stability for LFO materials
- Focus on full cell demonstration for charged cathodes and intermetallic anodes.
- Evaluation of manufacturing methods and impact on cell variation and performance.