

On-Line Weld NDE with IR Thermography

Jian Chen, Wei Zhang, Ralph Dinwiddie and Zhili Feng (Presenter) C. David Warren (PI)

Oak Ridge National Laboratory

May 17, 2012

Project ID # LM054

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: June, 2008
- End:
 - Phase I: June, 2010
 - Phase II: June, 2013
- Percent complete:
 - Phase I: 100%
 - Phase II: 50%

Budget

- Total project funding
 - DOE share: \$1,300K
 - Industry in-kind share: \$210K
- Funding received in FY11: \$450K
- Funding for FY12: \$256.8K

Barriers

- Barriers addressed
 - Non-destructive techniques for the evaluation of the integrity of joints made with lightweight materials.

Partners

- Interactions / collaborations
 - Chrysler, Ford, and GM
 - ArcelorMittal
 - AET Integration Inc.
 - AMD NDE Steering Committee
 - A/SP Joining Team
- Project lead
 - Oak Ridge National Laboratory

Project Objective

- Develop an online non-destructive evaluation (NDE) technology for spot weld quality monitoring based on infrared (IR) thermography that can be adopted reliably and cost-effectively in high-volume auto production environment for weld quality assessment
 - An expert system (hardware and software) for both post-weld and real-time on-line weld quality inspection
 - Weld quality database covering wide range of weld configurations (materials, thickness, coatings) common in auto-body structures

Relevance: Technology Gaps that This Project Addresses

- Today industry primarily relies on destructive testing to ensure the spot weld integrity of critical auto-body structures
 - Labor intensive, slow and expensive (rework and scraps)
 - Less effective for advanced high-strength steels, aluminum and other lightweight materials
- The destructive evaluation of weld quality is based on statistics and random sampling of small portion of aswelded auto-bodies.
 - Impossible to inspect 100% of the welds
 - No efficient method to immediately send feedback to the production lines

Past Attempts on IR Thermography based Weld Inspection

- Postmortem NDE
 - Mostly limited to lab trials
 - Heating/cooling source
 - Pulsed heating <1sec
 - Modulated heating > minutes (impractical for fast inspection)
 - IR signal measured by camera is highly sensitive to surface condition and environment interference
 - Requiring painting of the weld surface (impractical in auto production line)
- Real-time NDE
 - No successful attempts yet

Welding electrodes

Project Milestones

Month/Year	Milestone or Go/No-Go Decision
Jun-10	Demonstrate feasibility – detection of major weld quality Phase I Go/No-Go Decision (Passed)
Nov-10	Produce additional spot welds with different weld quality attributes made with RSW and weld bonding different steels, coating, thickness and stack-up configurations (Completed)
Feb-11	Modeling of post-mortem inspection to identify quantifiable IR thermal signatures and refine/optimize heating device and procedure (Completed)
Apr-11	Confirm the capability of low-cost IR camera (Completed)
Dec-11	Develop IR image acquisition module and analysis algorithms module for both real-time and post-weld inspection (Initial versions completed)
Dec-11	Destructive weld quality tests (On-going, with expanded sets of welds)
June-12	Development of expert software and prototype system including image acquisition, user interface, ability to adaptive learning and decision making (Initial prototyping system integrating software and hardware developed)
Dec-12	IR weld NDE guideline (On-going)
June-13	Prototyping and field demo (On-going)

Phase II Tasks and Schedule

	FY2010					FY2	2011			FY2	2012		FY2013			
Quarter	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1: IR Measurement Techniques																
1.1 Producing welds																
1.2 Postmortem techniques																
1.3 Real-time technique																
1.4 Destructive weld quality test																
1.5 Modeling																
1.6 Field trip and testing																
Decision Gate																
Task 2: IR Export Software																
2.1 IR signature algorithm																
2.2 User interface																
2.3 Image acquisition module																
2.4 Adoptive learning/training																
2.5 Beta testing																
Decision Gate																
Task 3: IR Weld NDE Guideline																
3.1 Guideline and manuals																
Decision Gate																
Task 4: Prototyping/Field Demo																
4.1 Prototype system																
4.2 Field demonstration																
4.3 Tech transfer																
Decision Gate																

Project is expected to complete in 2nd quarter of FY2013 due to later start in third quarter of FY2010

Completed tasks

On-going tasks

Passed decision gates

Future decision gates

⁷ Managed by UT-Battelle for the Department of Energy

Project Approach/Strategy

- Phase I Concept Feasibility (FY08-FY09)
 - Demonstrate the feasibility of IR thermography based spot weld quality inspection technology to detect various weld quality/defect attributes (post-weld and real-time inspections)
- Phase II Technical Feasibility (FY10-FY13)
 - Refine and optimize the robust IR image analysis algorithm that can provide quantitative measure of the quality and the level of defect (if any) of spot welds
 - Develop the cost-effective prototype system (hardware and software) operated in high-volume auto production environment
 - Develop a database covering wide range of weld configurations common in auto-body structures

Approach: Weld Quality Metrics

- Ranked by industry advisory committee in the order of importance (high to low)
 - Weld with no or minimal fusion
 - Cold or stuck weld
 - Weld nugget size
 - Weld expulsion and indentation
 - Weld cracks
 - Weld porosity

Less critical

Most critical

Needs to positively identify the above weld defects/attributes

Accomplishments (Phase I Feasibility)

- Post-weld IR inspection
 - Techniques to increase the IR signal-to-noise ratio
- Real-time IR Monitoring
 - Using the heat flow during welding
- Weld samples with controlled weld quality/defects attributes
 - Destructive examination to characterize and quantify them
- As-welded surface condition
- Initial development of an expert system to correlate IR signal to weld quality attributes

Figure 2. A weld with center voids shown (a) in cross-section view and (b) by machining off one of the steel sheets.

Accomplishment: (Phase I Feasibility) Real-time IR NDE

Successfully distinguished the acceptable weld range

Accomplishment: Low-Cost Camera

Phase I: Indigo Phoenix, \$200K

Phase II: FLIR A325, \$20K

- Dual use: both real-time monitoring and post-mortem NDE
- Initial cost estimate of entire system: \$30K-\$35K
 - IR camera: \$20K
 - Heating/cooling device: \$8K
 - Computer and software: \$2K
- Post-mortem and real-time benchmarking tests using Phase I welded samples confirmed the new camera has sufficient sensitivity and resolution

Accomplishment: Large Matrix of Materials relevant to AHSS Intensive Vehicle Structure

		•		
Steel Grades, Coating, Thickness	Post- mortem	Real- time		
DP590 Galvanized 1.2mmDP590 Galvanized 1.2mm	X	Х		
DP590 Galvanized 1.8mmDP590 Galvanized 1.8mm	Х	Х		
DP980 Cold rolled1.2mmDP980 Cold rolled1.2mm	x	X		
DP980 Cold rolled1.2mmDP980 Cold rolled 2.0mm	Х	Х		
DP980 Cold rolled 2.0mmDP980 Cold rolled 2.0mm	Х	X		
Boron Aluminized 1.0mmBoron Aluminized 1.0mm	Х			
Boron Aluminized 1.0mmTrip780 HDGA 1.0mm	X			
DP980 HDGA 1.0mmDP980 HDGA 1.0mm	X			
Boron 2.0mm Boron 2.0mm		Х		
DP600 HDGI 2.0mmTrip780 HDGA 2.0mm		Х		
Boron 2.0mmTrip780 HDGA 2.0mm		Х		

Steel Grades, Coating, Thickness	Post- mortem	Real- time
Boron 2.0mmBoron Aluminized 1.0mmBoron 2.0mm		X
DP600 2.0mmDP600 HDGI1.0mmDP600 2.0mm		X
DP980 HDGA 2.0mmDP980 HDGA 1.0mmDP980 HDGA 2.0mm		Х
TRIP780 HDGA 2.0mmTRIP780 HDGA 1.0mmTRIP780 HDGA 2.0mm		Х

3T stack

- Each combination including spot welds with varying attributes (i.e., nugget size, indentation & defects)
- Blanks corresponding to those yet to be evaluated

Accomplishment: Destructive Examination of Weld Attributes

- Sectioning welds
 - Nugget size (Φ)
 - Internal defects: porosity, and expulsion
 - Surface indentation (d)
- Dye penetrants
 - Surface cracking
- Surface micro-profiling
 - Surface indentation
 - Surface cracking

Accomplishment (Post-weld NDE): Computer Modeling

- Assist development of IR signal analysis algorithms of post-weld IR NDE
 - Algorithm in Phase I is based on the measurement of average IR intensity around welds which could be influenced by weld surface conditions
 - New algorithm is developed in Phase II to provide additional thermal signatures, and is insensitive to surface condition. (patent filling)

27

0.5

Time (s)

1.5

Accomplishment (Post-weld NDE): New Algorithm Quantitatively Distinguishing Weld Nugget Size

Induction heating

Accomplishment: New Algorithm for Realtime NDE Providing Reliable Detection

- A new IR image analysis algorithm has been developed (patent filing)
 - Insensitive to surface conditions

Progress: Prototype of Expert System (Integration of Hardware and Software)

Fully automated software for system control, data < acquisition, IR image analysis, training and decision making

Production line (Real-time)

Heating device (post-weld)

others

Movie Showing the Prototype IR NDE System in Operation

- · Click the above picture to play the movie
- Or click this link to open the Windows Media File (wmv)

Future Plan

• FY2012

- Produce additional testing welds made with other materials commonly used in auto-body structures
- Perform more IR inspections to expand the weld quality database covering wide range of weld configurations (materials, thickness, locations)
- Continue to refine and optimize the automated IR image analysis algorithms to reliably and quickly detect major weld qualities.
- Continue on the development of software and the system integration of the hardware

FY2013

- Complete the development of the prototype system
- Perform field demonstration
- Seek industry partnership for technology transfer and eventual commercialization

Summary

- Successfully demonstrated the feasibility to detect major weld quality and defects commonly encountered in resistance spot welds made using industry practices
- Confirmed the adequacy of low-cost IR camera for IR NDE
- Developed efficient IR image analysis algorithms for both post-weld and real-time inspection
 - Time duration for entire detection and decision can be less than 2 seconds
 - Further refinement/optimization underway
- Developed a prototype of automated software for system control, data acquisition, IR image analysis, deciding on weld quality, etc.

