

U. S. Steel

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles ASP-400

Philip A Yaccarino General Motors May 18, 2012

Project ID # LM066 www.a-sp.org

Timeline

- Start: Jan. 2, 2011
- Finish: Sept 30, 2011
- Project complete
 - No further funding

Budget

- Total project funding
 - DOE: \$158K
 - Contractor: \$158K
- DOE funding received
 - FY 2011: \$99K
 - FY 2012: \$56K

Barriers

- High mass of current generation sealed steel tanks
- Forming, rigidity and fatigue of thin wall, low mass tanks
- Manufactured cost

Partners

- Ford, GM
- ArcelorMittal
- Henkel Corporation
- No. American Stainless
- Nippon Steel, USA
- Soutec Ltd.
- Spectra Premium Inds. Inc.
- ThyssenKrupp Steel USA
- US Steel Corp.
- EDAG Inc.

PROJECT OBJECTIVE

Enable and demonstrate the manufacturing feasibility of low-mass, sealed steel fuel tanks suitable for use in advanced hybrid electric vehicles (AHEV) while achieving equivalent performance and cost to the production tank.

Critical to allow a low mass metal option for fuel tanks for advanced hybrid electric vehicles which require pressurized fuel tank systems.

Target mass reduction 30-40%

PROJECT APPROACH

TWO BENCHMARK TANKS

Step I

- Procure Fuel Tanks
- · Generate CAD by scanning
- Build FE Model

Step II

- Baseline Analysis Strength Analysis under Pressure/Vacuum
- (+35/16 kPa) condition **Fatigue Analysis** Stamping (one step)

Step III

- Topology Optimization Find optimum reinforcing
- Topography Optimization Find optimum bead pattern

Step IV

- Parametric Optimization Material Selection HSS / AHSS
- Thickness selections

Step V

Optimize

candidates to

finalize solution

- Verification Analysis for Finalized Result
- Strength analysis under pressure/vacuum conditions Fatigue analysis Stamping analysis (one step)

Input

Output

- **Physical Sealed** Fuel Tank
- **EDAG CAE Modeling**

Guidelines

Systems and parts dimensions, weight

CAD Data

FE Model

EDAG CAE Stiffness Analysis

Fuel tank stiffness

baseline analysis

results

Guidelines

EDAG CAE Optimization

Analysis Guidelines

ASP

Steel Material Database

Terokal 5089 Adhesive

Properties

Optimum

reinforcing concept and locations

Optimum Bead pattern

Optimum material and thickness combination for light weight

LWSSFT Fuel Tank

Tools Used

ANSA, Hyper Works, NASTRAN, Design Life, ABAQUS

PROJECT MILESTONES

Phase 1: Establish methodology

Establish project metrics

January 2011 – February 2011 Completed

Phase 2: Optimize mass for flat fuel tank (Lexus)

CAE/Forming Analysis

February 2011 – March 2011 Completed

Optimize Shape

February 2011 – April 2011 Completed

Phase 3: Optimize mass for large, saddle, fuel tank (Mercedes)

CAE/Forming Analysis

May 2011 – August 2011 Completed

Optimize Shape

August 2011 – September 2011 Completed

Phase 4: Report preparation and technology transfer

September 2011 Completed

CHARACTERISTICS OF BENCHMARK TANKS

			Tank		Steel		
2010 Model	Vehicle Type	Capacity gal (liter)	Mass pound (kg)	Weld Method	Thickness inch (mm)	Туре	
LEXUS RX 450h	CUV	16 (60.6)	* 65.6 (29.83)	Electric Resistance Seam	0.079 (2.0)	Low Carbon	
MERCEDES M 450H * Including post p	SUV aint, ** with fuel t	24 (90.8) ank accessorie	** 67.5 (30.68)	Plasma	0.059 (1.5)	301 LN Stainless	

LEXUS - BASELINE STRESS AND FATIGUE

ANALYSIS

☐ Load Condition: Static Pressure / Vacuum

- ☐ Set up Condition
 - ☐ Pressure Load: 35 kPa
 - ☐ Vacuum Load : -16 kPa
- Initial Tank Condition
 - ☐ Shell Thickness Upper / Lower : 2.0 mm
 - ☐ Shell / Baffle Material : Low Carbon Steel
 - ☐ Baffle Shell Thickness: 0.7 mm
 - ☐ Total Mass: 29.3 kg
- ☐ Fatigue Loads & Requirements :
 - Pressure / Vacuum : 35kPa to -16 kPa

LEXUS - STRUCTURAL IMPROVEMENTS

☐ Stress Analysis / Optimization Results
Additional Structural Baffles (1.0 mm Upper/Lower Shell thickness)

LEXUS - TOPOGRAPHY OPTIMIZATION

☐ Stress Analysis / Optimization Result based on Topography Optimization Result

❖ Load Condition: 35 kPa Pressure

LEXUS - PARAMETRIC OPTIMIZATION

□ Parametric Analysis Results Summary (with additional baffles)

Case#		Baffle Thickness	Mass (kg)	Mass Saving	Von-Mises Max Stress (MPa)	Von-Mises High Stress @
	(mm)	(mm)		(%)	` '	Fatigue (MPa)
1	2.0	0.7	29.3	0.0	506.5	506.5
2	2.0	0.7	29.3	0.0	413	413
3	2.0	0.7	29.3	0.0	541	386
4	2.0	0.7	29.3	0.0	465	371
5	2.0	0.7	30.1	+2.7	465	250
6	2.0	0.7	30.1	+2.7	303	265
7	1.5	0.7	23.4	-20.3	447	388
8	1.0	0.7	16.6	-43.3	838	716
9	0.9	0.7	15.8	-46.0	994	834
10	1.5 Upper	0.7	19.4	-34.5	433	381
10	0.9 Lower				834	
11	2.0	0.7/1.0/1.4	30.4	+3.6	279	268
12	1.8	0.7/1.0/1.4	27.7	-5.6	312	302
13	1.6	0.7/1.0/1.4	25.0	-14.7	363	344
14	1.4	0.7/1.0/1.4	22.3	-23.9	464	415
15	1.2	0.7/1.0/1.4	19.6	-33.5	592	522
16	1.0	0.7/1.0/1.4	16.9	-42.3	744	678
17						
18	1.4 Upr	0.7/1.4	22.8	-22.3	341	550
18	1.4 Lwr	0.7/1.4	22.0	-22.3	336	550
19	1.3 Upr				398	
19	1.1 Lwr	0.7/1.4	20.1	-31.4	529	529
20	1.0 Upr		 		579	
20	1.0 Lwr	0.7/1.4	17.4	-40.6	631	631
21	1.0 Upr				571	
21	1.2 Lwr	0.7/1.4	18.7	-36.2	450	571
22	1.1 Upr		<u> </u>		500	
22	1.2 Lwr	0.7/1.4	19.4	-33.8	450	531
23	0.9 Upr		····		667	
23	1.1 Lwr	0.7/1.4	17.4	-40.7	529	676

Min. thickness range focused on stress range

Upper: 1.0 mm Lower: 1.1 mm

with Additional Baffle

LEXUS - VERIFICATION ANALYSIS

☐ Forming Analysis Results Summary

Case#	Model Description	Shell Thickness (mm)	Baffle Thickness (mm)	Mass (kg)	Mass Saving (%)	Von-Mises Max Stress (MPa)	Von-Mises High Stress @ Fatigue (MPa)	Steel Candidates
18	Model v8 07/17/11, Iter 1	1.4 Upr	0.7/1.4	22.8	-22.3	341	550	TRIP 350/600
18	Model vo om min, itel i	1.4 Lwr	0.771.4	22.0	-22.3	336	330 -	TRIP 350/600
19	Model v8 07/17/11, Iter 2	1.3 Upr	0.7/1.4	20.1	-31.4	398	529	TRIP 400/700 OR TRIP 450/800
19	Model vo om min, itel 2	1.1 Lwr	0.771.4	20.1	7	529	329	TRIP 450/800 OR 301LN-1/4 Hard
20	Model v8 07/17/11, Iter 3	1.0 Upr	0.7/1.4	17.4	-40.6	579	631	301LN-1/4 Hard
20	Model vo om min, itel 3	1.0 Lwr	0.771.4	17.4	-40.0	631		301LN-1/4 Hard
21	Model v8 07/17/11, Iter 4	1.0 Upr	0.7/1.4	18.7	-36.2	571	571	301LN-1/4 Hard
21	Woder vo om min i, itel 4	1.2 Lwr	0.771.4	10.7	-30.2	450	371	TRIP 450/800 OR 301LN-1/4 Hard
22	Model v8 07/17/11, Iter 5	1.1 Upr	0.7/1.4	19.4	-33.8	500	531	TRIP 450/800 OR 301LN-1/4 Hard
22	Woder vo om min, iter 5	1.2 Lwr	0.771.4	5.4	-55.0	450	331	TRIP 450/800 OR 301LN-1/4 Hard
23	Model v8 07/17/11, Iter 6	0.9 Upr	0.7/1.4	17.4	-40.7	667	676	301LN-1/4 Hard
23	iviodei vo om m., itel o	1.1 Lwr	0.771.4	17.4	-40.7	529	070	TRIP 450/800 OR 301LN-1/4 Hard

- **AHSS** (TRIP450/800) → Case # 22
- **Stainless** (301 LN-1/4 hard) → Case # 20, 21, 22, 23
- ☐ Fatigue Life Analysis Results Case#21 (Iteration# 14)
 - Analyzed fatigue life 72,420 Cycles (minimum) >> 18,000 Cycles (targeted)

☐ Cost comparison

AHSS (TRIP) (with post paint)

■ High product volume (150,000/yr)

■ Low product volume (50,000/yr)

Cost per kilogram saved: \$0.14 (high volume)

Stainless (301 LN 1/4 hard) (without post paint)

High product volume (150,000/yr)

$$+37.7\%$$

■ Low product volume (50,000/yr)

Cost per kilogram saved: \$2.10 (high volume)

Lexus Tank Results

High Product Volume

LEXUS - COST ANALYSIS

Low Product Volume

LEXUS - CONCLUSIONS

□ Conclusions

- Optimized results are shown in following table with baffles present and achieved 34%~41% mass reductions
- No significant tank volume change
- Structural baffles are built on existing sloshing baffles by extension and welding

		Steel Grade	Initial Tank	Reduced Tank Mass Sav		Cost Changes High / Low Vol.		
		01001 01440	Mass (kg)	Mass (kg) (%)		(%)	Upper	Lower
Material Type	AHSS	TRIP 450/800	20.2	19.4 (-9.9)	33.8	+2.7 / +6.8	1.1	1.2
	Stainless Steel	301LN - 1/4 Hard	29.3	17.4 (-11.9)	40.7	+37.7 / +35.0	0.9	1.1

MERCEDES: BASELINE STRESS AND FATIGUE ANALYSIS

- ☐ Set up Condition
 - ☐ Pressure Load: 35 kPa
 - ☐ Vacuum Load: -16 kPa
- ☐ Initial Tank Condition
 - ☐ Shell Thickness Upper / Lower : 1.5 mm
 - ☐ Shell / Baffle Material : Stainless 301 LN
 - ☐ Total Mass: 24.2 kg

Fatigue Life of Baseline Mercedes Tank

☐ 29,000 cycles

MERCEDES - OPTIMIZATION RESULTS

☐ Topography Optimization

☐ Structural Improvements

MERCEDES - STRUCTURAL IMPROVEMENTS AND RESULTS

- ☐ Model Iteration WB2
 - 1.1mm Upper and Lower Shell
 - 0.3mm Steel Reinforcements with 1.0 mm Terokal 5089 structural adhesive

☐ MERCEDES - Mass Reductions

Iteration #	Description	Shell Thickness (mm)	Baffle/Reinf Thickness (mm)	Total Mass (kg)	Mass Change (kg)	Mass Change (%)	Von-Mises Max Stress (Mpa)
В	Baseline	1.5		24.2			282
0	Topography Optimized	1.5		24.2			252
B1	Baffles Added	0.8	0.7	14.9	_9.3	-38.4	262
WB1	Weld Bonded Reinf Added	0.8	0.3	15.1	- 9.1	-38.6	272
WB2	Weld Bonded Reinf Added	1.1	0.3	18.2	-6.0	-24.8	275

WB1 and WB2 iterations do not include baffles

MERCEDES - VERIFICATION ANALYSIS

☐ Forming Analysis Results Summary – Upper Shell (Lower Shell Similar)

						Shell Th	ickness ((mm)		
Material Type		1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.9	0.8
	201 LN								thinning	thinning
Stainless HSS	301 1/4-hard	crack	crack	crack	crack	crack	crack	crack	crack	crack
П33	304 annealed								thinning	thinning
	HSLA 350/450	crack	crack	crack	crack	crack	crack	crack	crack	crack
нѕѕ	TRIP 350/600	crack	crack	crack	crack	crack	crack	crack	crack	crack
	TRIP 400/700	crack	crack	crack	crack	crack	crack	crack	crack	crack

➤ Acceptable materials due to the forming geometry

☐ Fatigue Analysis Results Summary

Iteration #	Description	Shell Thickness (mm)	Baffle/Reinf Thickness (mm)	Total Mass (kg)	Mass Change (kg)	Mass Change (%)	Von-Mises Max Stress (Mpa)	Fatigue Life (cycles)	Steel Type
В	Baseline	1.5		24.2			282	29,000	Stainless 301LN
0	Topography Optimized	1.5		24.2			252		
B1	Baffles Added	0.8	0.7	14.9	9.3	-38%	262	40,000	Stainless 201LN
WB1	Weld Bonded Reinf Added	0.8	0.3	15.1	9.1	-38%	272	39,000	Stainless 201LN
WB2	Weld Bonded Reinf Added	1.1	0.3	18.2	4.4	-25%	275	39,000	Stainless 201LN

MERCEDES - COST ANALYSIS

Mercedes Result – Stainless Steels

High Product Volume

☐ Cost Comparison Facts

Baffle only

- High product volume (150,000/yr)
 - -32.4 %
- Low product volume (50,000/yr)
 - -22.0 %

Savings per kg \$4.69 (High Volume)

Weld Bonded Reinforcement (WBR)

- High product volume (150,000/yr) -28.5 %
- Low product volume (50,000/yr) -20.7 %

Savings per kg \$6.37 (High Volume)

*Seam welding assumed as joining method for all cost calculations and without post paint

Low Product Volume

MERCEDES - CONCLUSIONS

□Conclusions

- Significant mass reduction achieved by using stainless steel
- Achieved mass reduction : 38.5% (24.2 kg \rightarrow 14.9 kg)
- Optimized stainless steel tanks exceed fatigue & rigidity requirements and are lower cost

			Stool Crodo	Initial Tank	Reduced Tank	Mass Saving	Cost Changes		kness (mm)
			Steel Grade	Mass (kg)	Mass (kg) (%)	High / Low Vol (%)	Upper	Lower	
	Material Type	Stainless Steel	201LN - Annealed	24.2	14.9 (-9.3)	38.5	-32.4 / -20.7	0.8	0.8

OVERALL SUMMARY

]	Target	mass	reductions	of 30-40%	achieved
---	---------------	------	------------	-----------	----------

□ Enablers:

Structural supports:

Stiffening ribs Structural baffles Weld-bonded adhesive patches

Thinner steels for tank walls:

Carbon AHSS (TRIP) steel Stainless steel

☐ Fatigue and structural	rigidity req	uirements	met
--------------------------	--------------	-----------	-----

- ☐ Low cost/kg of mass savings
- ☐ Vehicle level crashworthiness of designs not evaluated

Follow up Work Recommended:

- **□** Evaluation of crashworthiness of proposed designs
- **□** Evaluation of manufacturing feasibility

TECHNICAL BACK-UP SLIDES

STRESS ANALYSIS - BASELINE RESULTS

☐ Stress Analysis Results - LEXUS

Static Pressure

❖ Static Vacuum

FATIGUE ANALYSIS - BASELINE RESULTS

LEXUS TANK

☐ Fatigue Analysis Results

Fatigue Life of Lexus Tank

Test Result by GM

FORMING ANALYSIS - BASELINE RESULTS

☐ Formability Results (one step forming) - Upper Shell - LEXUS

Max. Thinning 27%

The physical tank thicknesses have been measured and correlate with the forming simulation Formability Results
No Failures

LEXUS - PARAMETRIC OPTIMIZATION

☐ Parametric Analysis Results Summary

LEXUS - VERIFICATION ANALYSIS

☐ Fatigue Life Analysis Results – Case#22 (Iteration# 15)

■ Analyzed fatigue life 27,380 Cycles (minimum) >> 18,000 Cycles (targeted)

