

Isotropic, Bottom-Up Soft Magnetic Composites for Rotating Machines

Todd C. Monson, PI, Electric Motors Keystone 2: Electric Motors Sandia National Laboratories June 11, 2019

Project ID: elt216

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeyvell International Inc for the U.S. Department of Energy's National Nuclear Security Administratio under contract DE-NA0003525.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

² Overview

Timeline

- Start FY19
- End FY21
- 25% complete

Budget

- Total project funding
 - DOE share 100%
- Funding received in FY19: \$125k

Barriers

- Non-rare-earth electric motor performance
- Material property optimization (to lower cost and improve performance and reliability)
- Reliability: High temperature performance (150 °C) over a long lifetime (300,000 miles)

Partners

- ORNL, NREL, Ames Lab
- Purdue University, Illinois Institute of Technology (IIT)
- Project lead: Sandia Labs

3 Relevance

- To meet 2025 goals for enhanced peak power (100 kW), specific power (50kW/L), and reduced cost (3.3 \$/kW) in a motor that operates at > 20,000 rpm, improved soft magnetic materials must be developed
- Improved soft magnetic materials will enable high performance nonrare-earth motors
- Replacement of permanent magnets with soft magnet materials highlighted in Electrical and Electronics Technical Team (EETT) Roadmap as a potential R&D pathway for meeting 2025 targets

Homopolor motor design (courtesy of Scott Sudhoff at Purdue) that doesn't require permanent magnets

Figure 9. Rare Earth Metal Prices Track Oxides Very Closely Source: Metal Pages courtesy of Critical Materials Institute

As seen in Oct. 2017 EETT Roadmap

Milestones

Milestone, Keystone 2 – Electric Motors	
2.1 Demonstrate a composite magnetic stator, and evaluate saturation polarization (J_s) and eddy-current losses.	9/30/2019

Progress towards milestone to date:

- Completed a survey of current state of the art in soft magnetic composites for electrical machine applications
- Developed process for converting mixed phase commercial Fe_xN powder to phase pure $\gamma^{\prime}\text{-}Fe_4N$
- Fabricated prototype Fe₄N composite inductor and characterized its magnetic properties
- Selected epoxy chemistry and demonstrated the formation of an iron/epoxy composite toroid

5 Approach

- Develop high magnetization, low loss iron nitride based soft magnetic composites for electrical machines
- Composite approach will lower losses even further and enable efficient operation at rotational speeds up to 20,000 rpm
- Epoxy based matrix (binder) capable of operating at elevated temperatures (up to 150 °C) over an extended lifetime (300,000 miles or 15 yrs.)
- γ '-Fe₄N has a higher saturation polarization (J_s) and electrical resistivity than Si steel
- Use of abundant elements (Fe and N) will keep costs low

Element	Mass fraction (ppm)		
Hydrogen	739,000		
Helium	240,000		
Oxygen	10,400		
Carbon	4,600		
Neon	1,340		
Iron	1,090		
Nitrogen	960		
Silicon	650		
Magnesium	580		
Sulfur	440		

From Croswell, Ken (February 1996). Alchemy of the Heavens. Anchor. ISBN 0-385-47214-5.

6 Approach

Diamines will bond directly to Fe₄N surface and epoxy matrix for enhanced mechanical robustness and particle electrical isolation

Convert commercial Fe_xN powder to phase pure Fe₄N

Coat Fe₄N and mix with epoxy monomers

- Pour into 3D printed mold and cure into stator/rotor part
- Press if necessary to increase density and loading factor
- Results in a net-shaped part (no machining required)

Approach – Epoxy Robustness in Motors

- Possible to design epoxy systems with glass transition temperatures (T_g) much greater than 150 $^{\circ}\text{C}$ 1,2
- Epoxies are already ubiquitous in electrical machine construction ^{2,3}
- Composites have already been successfully demonstrated in high speed motors ⁴ and even flywheels rotating up to 60,000 rpm ⁵
- Selecting our own epoxy monomers allows us to design our composite from the ground up and tailor its properties
 - $^{\circ}$ Curing protocol can be adjusted to further tune T_{g} and mechanical properties
- Diamines will bond directly to Fe₄N surface and epoxy matrix for enhanced mechanical robustness and particle electrical isolation

- 3. http://www.crosslinktech.com/products-by-application/featured-electric-motor-products.html
- 4. A. Schoppa and P. Delarbre, "Soft Magnetic Powder Composites and Potential Applications in Modern Electric Machines and Devices," in IEEE Transactions on Magnetics, vol. 50, no. 4, pp. 1-4, April 2014, Art no. 2004304. DOI: 10.1109/TMAG.2013.2290135
- 5. Mason, Patrick & Atallah, K & Howe, D. (1999). Hard and soft magnetic composites in high speed flywheels. International Committee on Composite Materials, Paris

^{1. &}lt;u>https://www.masterbond.com/techtips/how-optimizing-glass-transition-temperature-tg</u>

^{2. &}lt;u>https://magneticsmag.com/new-structural-adhesive-from-delo-for-magnet-bonding-has-high-temperature-stability/</u>

Technical Accomplishments and Progress Fabrication of γ'-Fe₄N components

- First ever fabrication of bulk γ '-Fe₄N parts
 - \circ Spark plasma sintering (SPS) used for consolidation of bulk Fe₄N
- U.S. Patent #9,963,344

Magnetic Material	J _s (T)	ρ (μΩ⋅m)	Cost
Si steel	1.87	0.05	Low
γ' -Fe ₄ N	1.89	~200	Low

Technical Accomplishments and Progress Current γ'-Fe₄N properties

- $J_s = 1.62 T$ (Theoretical value is 1.89 T)
- > 80% γ'-Fe₄N
 - Secondary phases of Fe₃N and Fe present
- We have developed a process to create phase pure material...

Technical Accomplishments and Progress Production of phase pure γ '-Fe₄N powder

- Simple heat treatment converts mixed phase commercial powder
- Only phase pure γ '-Fe₄N remains

Technical Accomplishments and Progress Preliminary γ '-Fe₄N composite results

- Significantly lower core losses in Fe₄N composites when compared to both bulk Fe₄N and COTS ferrites
- Much higher volume loadings of Fe₄N still possible
- Transitioning to epoxy matrix will exceed temperature and mechanical strength requirements

¹² Technical Accomplishments and Progress Epoxy chemistry demonstrated

- Epoxy based chemistry successfully demonstrated using iron particles
- Chemistry should proceed identically as we transition to Fe₄N particles
- Smaller chain diamines available to decrease particle spacing and increase volume loading of Fe₄N even further

Iron/epoxy 3D printed toroid

Responses to Previous Year Reviewers' Comments

ħ

- N/A: First year of project
 - Project not reviewed last year

¹⁴ Collaboration

- Purdue University (Scott Sudoff) Motor design, prototyping, and testing
- IIT Design, construction, and dynamometer testing of 3 reduce power prototype machines
- ORNL High-Fidelity Multiphysics Material Models for Electric Motors
- Ames Additional expertise in magnetic material fabrication, processing, and characterization
- NREL Advanced packaging, reliability, prognostics, thermal management

Remaining Challenges and Barriers

- Ensuring epoxy $T_g > 150 \ ^{\circ}C$
- Ensuring adequate mechanical strength for > 20,000 rpm motor operation
- Achieving sufficient magnetic particle volume loading for high performance in non-rare-earth electric motor designs

¹⁶ Proposed Future Research

Remaining FY19 Tasks

- Demonstrate epoxy composite approach with phase pure γ'-Fe₄N particles
- Demonstrate a composite magnetic stator, and evaluate saturation polarization (J_s) and eddy-current losses (end of FY19 milestone)

Research Beyond FY19

- Improve Fe₄N/epoxy composite based on evaluation of FY19 results (volume loading, eddy current loss, mechanical properties)
- Optimize epoxy properties
- Demonstrate Fe₄N/epoxy composite in prototype motor

* Any proposed future work is subject to change based on funding levels

17 Summary

- Iron nitride (γ '-Fe₄N) properties (J_s , ρ) exceed those of Si steel
- Since Fe and N are the 6th and 7th most abundant elements, Fe₄N will be a very low cost new soft magnetic material
- Net-shaped Fe4N/epoxy composites will increase efficiency through reductions of eddy current losses
 - Custom epoxy crosslinked directly to magnetic particles will have enhanced properties
 - Epoxy matrix will exceed 150 °C temperature requirements
 - Fe₄N/epoxy composite can achieve the required mechanical strength for motors operating at > 20,000 rpm

Sandia Labs Team Members: Jason Neely, Jack Flicker, Bob Kaplar, Tyler Stevens