

Lithium Superoxide-Based Batteries

P.I.: K. Amine L. Curtiss, Jun Lu Argonne National Laboratory DOE merit review June 1-4, 2020

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID# BAT-431

Overview

Timeline

- Start: 2018
- Finish: 2022
- **60 %**

Budget

- Total project funding
 - DOE share: \$ 1500 K
 - Contractor 0
- FY 18: \$ 500 K
- FY 19: \$ 500 K
- FY 20: \$ 500 K

Barriers

- Barriers addressed
 - Cycle life
 - Capacity
 - Efficiency

Partners

- Interactions/ collaborations
 - S. Vajda, ANL/Prague
 - S. Al-Hallaj and B. Chaplin, UIC
 - J. G. Wen, ANL
 - Y. Wu, Ohio State University
 - A. Ngo, ANL
 - K. Senjac UIC/ANL

Project Objectives and Relevance

- Investigation of Li-O₂ batteries based on lithium superoxide to achieve understanding of discharge chemistry and how to enhance cycle life.
- Use an integrated approach based on experimental synthesis and state-of-the-art characterization combined with high level computational studies focused on materials design and understanding
- Li-air batteries based on lithium superoxide have the potential for being the basis for closed systems without need for an external O₂ source

FY18 Milestones

Month/ Year	Milestones
Dec/19	Investigate LiO_2 to Li_2O_2 conversion under different Ar conditions after LiO_2 formation on charge to help understand and control Li-O2 discharge chemistry, Q1 (Completed)
Mar/20	Synthesis and characterization of IrLi _n alloys for templated lithium superoxide growth in Li-O ₂ batteries, Q2 (Completed)
Jun/20	Investigate performance of Li-O ₂ battery using cathode based on pre- formed IrLi ₃ particles on rGO support, Q3(Initiated)
Sep/20	Investigate performance of Li-O ₂ battery using cathode based on pre- formed IrLi particles on rGO support, Q4 (Initiated)

Strategy: an integrated experiment/theory approach that combines testing, understanding and design to develop lithium superoxide based Li-O2 batteries

Design of improved cathodes/electrolytes for efficiency, cycle life, and capacity

Experimental methods

<u>Synthesis</u>

- New catalyst materials
- Electrolytes

Characterization

- In situ XRD measurement (Advanced Photon Source)
- TEM imaging
- FTIR, Raman
- SEM imaging
- Impedance measurements
- Titration

<u>Testing</u>

Swagelok cells

Highly accurate quantum chemical modeling

- Periodic, molecular, and cluster calculations using density functional calculations
 - Static calculations
 - Ab initio molecular dynamics simulations (AIMD)
- Understanding discharge products
 - Li₂O₂ structure and electronic properties
 - LiO₂ structure and electronic properties
- Design of electrolytes
 - Reaction energies and barriers for stability screening
 - Electrolyte/surface interface simulations

Technical Accomplishments

<u>Characterization and understanding of lithium superoxide based</u> <u>batteries</u>

- LiO₂ to Li₂O₂ conversion under different Ar conditions
- Provides for new understanding of discharge mechanisms in Li-O₂ batteries

Synthesis of templates for lithium superoxide growth in Li-O₂ batteries

- Direct synthesis of Ir₃Li for templating LiO₂ instead of evolution from Ir nanoparticles on cycling
- Direct synthesis of a IrLi alloy particles for templating LiO₂

Performance of the new templating materials

- Identification of the discharge product
- Voltage profiles
- Implications for new Li-O₂ battery chemistries

Accomplishment: Characterization and understanding of lithium superoxide based batteries

- LiO₂ to Li₂O₂ conversion under different Ar conditions after LiO₂ formation on charge
 - Purge of O_2 by Ar followed by flowing O_2
 - Purge of O₂ by Ar and then a fully closed cell
- Results
 - The two conditions lead to different discharge voltage profiles
 - However, the product remains the same Li_2O_2
- Implications for charge transport in discharge products in Li-O2 batteries
 - Impedance measurement made on different discharge samples
 - In all cases LiO₂ shows better electronic conductivity than Li₂O₂
- Mechanistic understanding from the experiments
 - Surface mediated Li₂O₂ growth has a lower discharge potential than solution phase growth
 - This is true for these experiments, but is also probably true in general
- Preliminary results for a closed Li-O₂ battery, i.e. no source of O₂

LiO₂ to Li₂O₂ conversion under different Ar conditions after LiO₂ formation on discharge

- a) Voltage profile of Li-O2 cell with Ir-rGO cathode, discharged at 100 mA/g current density in a constant flow of O2 (cell #1)
- b) Voltage profile of Li-O2 cell with Ir-rGO cathode, discharged at 100 mA/g current density cathode in a constant flow of O2 directly followed by a constant flow of Ar (cell #2).
- c) Voltage profile of Ir-rGO under O₂ followed by discharge in Ar in a fully closed cell

<u>Notes</u>: The Ar discharge is shown to start at 0 mAh/g to aid comparison of obtained capacity with the initial O2 discharge however, the actual discharge started after 1000 mAh/g of O2 discharge. All cells were recharged in O2 using a current density of 100 mA/g;

 The two conditions lead to different discharge voltage profiles however the product remains the same (Li₂O₂) but with different formation mechanism (see following four slides)

Characterization of product after LiO₂ to Li₂O₂ conversion under different Ar conditions

Raman spectra of discharged cathodes in O2 and with flowing Ar

 $Ti(IV)OSO_4$ solutions resulting from titration with discharged cathodes. Left to right: $Ti(IV)OSO_4$ titrant, cell #1 titration solution, and cell #2 titration solution.

Titration^{1,2} using Ti(IV)OSO₄:

- 1. Wang, Amine, Curtiss, et al ACS Energy Letters, **3**, 1105 (2018)
- 2. Wang, Amine, Curtiss, et al J. Phys. Chem. C 121, 9657 (2017)

	Wt.%
Discharge conditions for titrations	Li ₂ O ₂
	6
Baseline: normal O ₂ during discharge (cell #1)	
Baseline: normal O ₂ during discharge (cell #1, repeat	5
Purge of O ₂ by Ar followed by flowing Ar during	98
discharge after 1 st discharge in O2(cell #2)	
Purge of O ₂ by Ar and then a fully closed (no O2) cell during	98
discharge after 1 st discharge in O2 (cell #3)	

 Titration shows that during first discharge in O₂ the discharge product is LiO₂, after the second discharge under both Ar conditions the discharge product is Li₂O₂; Raman spectra confirm this

Impedance measurements of LiO₂ from O₂ discharge and of Li₂O₂ produced under different Ar conditions

a) Nyquist plot obtained from pristine, post O_2 discharge and post charge; b) Nyquist plot obtained from pristine, post O_2 discharge, post flowing Ar discharge, and after charge.. c) Nyquist plot obtained from pristine, post O_2 discharge, post closed Ar discharge, and after charge.

<u>Note:</u> Experimental data and equivalent circuit model results are illustrated as shapes and solid lines, respectively, in Nyquist plots

 In all cases LiO₂ shows better electronic conductivity than Li₂O₂ consistent with predictions from density functional theory

New mechanistic understanding of Li-O₂ discharge chemistry from Li₂O₂ produced under different Ar conditions

Fully closed under Ar results in mainly solution mediated growth (due to O_2 produced from disproportionation) and a higher discharge potential

Under <u>flowing</u> Ar results in only surface growth due to lack of any O_2 in electrolyte (from LiO₂ disproportion) and a lower discharge potential

- Surface mediated Li₂O₂ growth has a lower discharge potential than solution phase growth
- This is true for these experiments, but is also probably true in general for discharge chemistry in a Li-O₂ battery.

Preliminary results for cycling (discharging and charging) a closed Li- O_2 battery, i.e. no external source of O_2

Desired reactions:

Discharge: $LiO_2 + Li^+ + e \rightarrow Li2O2$ Charge: $Li_2O_2 \rightarrow LiO_2 + Li^+ + e$

 Preliminary results show that at low charge rates it is possible to discharge and charge a closed Li-O₂ battery (i.e. no external source of O₂)

<u>Accomplishment: Successful synthesis of metal alloy</u> particles for directing lithium superoxide growth

- Previous studies of lithium superoxide based Li-O2 batteries have been based on Ir nanoparticles on an reduced graphene oxide (rGO) cathode that form IrLi₃ during cycling, which act as templates for growth of LiO2 instead of the more stable Li₂O₂ product
 - Ir nanoparticles with a range of sizes (2-500nm) : Lu, Amine, Curtiss, et al Nature 529, 377 (2016).
 - Size selected Ir clusters (Ir_n , n = 2-8) Lu, Vajda, Amine, Curtiss et al J. Phys. Chem A **123**, 10047 (2019).
- In this work we have synthesized and characterized particles of the IrLi3 alloy using a high temperature method to provide a "direct" LiO2 templating cathode in Li-O₂ batteries
 - Characterization has been carried out to confirm the structure and determine the size of the particles
 - Based on calculations that a 1:1 alloy will also be a good template, we have also synthesized a IrLi alloy

Baseline results for Ir nanopowder used for synthesis of IrLi alloys

 Characterization results for Ir nanopowder used in high temperature synthesis

High temperature synthesis and characterization of Ir3Li

- Ir₃Li synthesis goal is to make small particles for the rGO cathode
 - conditions: 500 °C and 3:1 Ir:Li starting reactants

 Size of IrLi3 particles depends on synthesis conditions; by using the right conditions particle size of <1µm has been achieved

High temperature synthesis and characterization of IrLi alloy

- IrLi alloy synthesis
 - 500 °C in Ar, 1:1 Ir:Li

DFT calculation showing a good lattice match of 1:1 IrLi alloy with LiO2 of alloy

- XRD shows pure IrLi was synthesized for use in cathodes
 - Raman spectra is also consistent with IrLi
 - SEM and TEM is underway

<u>Accomplishment:</u> Synthesized IrLi particles that were successful in directing lithium superoxide growth in Li-O₂ cells

- In this work we have used rGO to as a support for our synthesized IrLi_n particles and used the resulting rGO/IrLi_n materials as a cathodes in Li-O₂ batteries
 - The cathodes were used with a TEGDME/TFSI electrolyte in a Li-O₂ battery
 - Performance of the cathodes was evaluated and discharge product characterized
- The discharge product from both IrLi and IrLi₃ based cathodes was found to be lithium superoxide and capable of being cycled in the Li-O2 batteries with O2 source
 - These results have shown then it is possible to stabilize growth of lithium superoxide in a Li-O2 batteries by a templating action of preformed IrLi3 particles as well as the IrLi alloy
 - Hence, it is not necessary to use an Ir nanoparticles that evolve into IrLi₃ particles during cycling

Performance of Li-O₂ battery using cathode based on pre-formed IrLi₃ particles on rGO support

Sample	Wt.% Li ₂ O ₂ ± 2%
rGO	33
Ir ₃ Li-rGO	0

Titration data after 1.5 cycles for a rGO and Ir3Li-rGO cathodes

 Pre-formed IrLi₃ particles (<1µm in size) are found to result in LiO₂ discharge product with low charge potentials during cycling

Performance of Li-O₂ battery using cathode based on pre-formed IrLi (1:1 alloy) particles on rGO

Voltage profile

Raman and titration after 1.5 cycles confirm LiO_2 as discharge product and no Li_2O_2 formation

 Pre-formed IrLi (1:1 alloy) particles are found to result in LiO₂ discharge product during cycling

Response to last year reviewer's comments

No comments from last year.

Proposed Future Work

- Investigation of other electrolytes for stabilization of lithium superoxide in Li-O₂ batteries
 - Extend the lifetime of the discharge product for better cycle life
- Investigation of additives to electrolytes
 - Provide protection of the lithium anode for longer cycle life
- Search for lower cost materials to template lithium superoxide in Li-O₂ batteries
 - Use computational simulations to find materials with good lattice matches with lithium superoxide
 - Synthesize or purchase the materials for testing in cathodes

Collaborations with other institutions and companies

- S. Vajda, A. Halder, ANL
 - Development of new cathode materials based on supported size-selected metal cluster
- S. Al-Hallaj, B. Chaplin UIC
 - Characterization of discharge products and cathode materials
- J. G Wen ANL
 - TEM characterization of discharge products and catalysts
- K. C. Lau, California State University, Norridge
 - Computations

Remaining Challenges and Barriers

- Discovery of new electrolytes for lithium superoxide Li-O₂ batteries that can extend the lifetime of the discharge product for longer cycle life
- Investigation of additives to electrolytes for protection of the lithium anode for longer cycle life
- Search for lower cost materials to template lithium superoxide in Li-O₂ batteries

Summary

- Investigation of LiO₂ to Li₂O₂ conversion during discharge under different Ar conditions in lithium superoxide based batteries
 - Has provided a new understanding of surface mediated vs solution phas discharge mechanisms in Li-O₂ batteries
 - Prelimnary results on charging and discharging a lithium superoxide battery without an O₂ source
- Synthesis of templates for facilitating lithium superoxide growth in Li-O₂ batteries
 - Direct synthesis of Ir_3Li particles for templating LiO_2 instead of evolution from Ir nanoparticles on cycling
 - Direct synthesis of a IrLi alloy particles for templating LiO₂
- Performance of the new pre-formed IrLi_n alloys in cathodes for Li-O₂ batteries materials
 - Identification of the discharge product as LiO₂
 - Voltage profiles showing cycling of the lithium superoxide batteries based on pre-formed IrLi_n alloys