

Investigation on Lithium Superoxide-Based Batteries

P.I.: K. Amine L. Curtiss, Jun Lu, Xuanxuan Bi Argonne National Laboratory DOE merit review June 10-13 , 2019

Project ID: bat431

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Start: 2017
- Finish: 2020
- **80%**

Budget

- Total project funding
 - DOE share: 1300
 - Contractor 0
- FY 17: \$ 400 K
- FY 18: \$400 K
- FY 19: \$ 500 K

Barriers

- Barriers addressed
- Unstable electrolytes
- Electro-catalyst poisoning
- Reversibility of the reaction

Partners

- Interactions/ collaborations
 - J. Li, MIT
 - J. G. Wen, ANL
 - R. Shahbazian-Yassar, UIC
 - L. Hu, UM
 - S. Meng, UCSD
 - Y. Wu, OSU

Project Objectives and Relevance

- Understand the conversion mechanism of alkali metal (Li, Na, K) superoxide based batteries
- Use an integrated approach based on experimental synthesis and state-of-the-art characterization combined with high level computational studies focused on materials design and understanding
- Use conversion mechanism of oxygen redox to enable a closed lithium superoxide systems to eliminate volumetric energy density issues
- Explore the Na- and K- superoxide based battery systems.

FY19 Milestones

Month/ Year	Milestones				
Dec/18	Investigation of light-anion redox nanolithia cathodes for Li-ion batteries. Completed				
Apr/19	Investigation of the sodium superoxide stabilization in sodium-oxygen batteries. <i>Completed</i>				
Jun/19	Finalized characterization of iridium clusters based cathode in lithium superoxide batteries. <i>Completed</i>				
Sept/19	Investigation of new nanostructured catalytic cathode for high-capacity sodium superoxide based sodium–oxygen batteries. <u>On going</u>				
Sept/19	Development of lithium ion battery using sodium superoxide and potassium superoxide as cathode in the absence of oxygen. <u>On going</u>				

Strategy: understanding the conversion mechanism of oxygen redox in $Li-O_2$ batteries and realizing lithium superoxide battery and using these new results to enable a closed $Li-O_2$ system

Experimental methods

<u>Synthesis</u>

- New catalyst materials
- New cathode materials

Characterization

- XAS measurements
- Raman
- SEM imaging
- In situ XRD measurement (Advanced Photon Source)
- TEM imaging

<u>Testing</u>

- Swagelok cells
- Coin cells
- Stainless steel cells

Technical Accomplishments

- I. Demonstrate proof of concept of closed system between Li_2O , Li_2O_2 and LiO_2 without use of O_2 gas
 - Nanoporous substrate Co_3O_4 filled with Li_2O served as a cathode in lithium closed battery.
 - Nanoporous substrate Co₃O₄ worked as a skeleton to promote the stable cycle between Li₂O, Li₂O₂ and LiO₂ without releasing/taking O₂ gas.
- II. <u>Lithium superoxide (LiO₂) stabilization</u>
 - > Ir clusters with suitable particle size were found to be able to stabilize the LiO_2 in $Li-O_2$ battery.
 - Mechanism of stabilization was elucidated.
- III. <u>Stabilization of sodium superoxide (NaO₂) in Na-O₂ batteries</u>
 - Cell environment was critical for the formation of discharge products in Na-O₂ batteries.
 - NaO₂ was successfully stabilized in a well-sealed Na-O₂ battery.

Anion-redox nanolithia cathodes for Li-ion batteries

- Our studies have revealed an approach to realize light-anion redox cathode without O₂ evolution.
- Performance of this kind of nanolithia anion-redox cathode (energy density both based on weight and volume) is very promising
- Good performance (200 cycle with low polarization and no capacity fade) was obtained using a conventional electrolyte (1M LiPF₆/EC/DEC).

Schematic of Co_3O_4 skeleton wetted by amorphous $Li_2O/Li_2O_2/LiO_2$

Voltage profile for Co_3O_4 as a nanoporous substrate and filled with Li_2O cathode

TEM of Li₂O and Co₃O₄ nanocomposite cathode

The cathode is a mixture of Co_3O_4 and Li_2O , and most of the Li_2O nanoparticles are surrounded by a nonocrystalline Co_3O_4 skeleton.

Transmission electron microscopy (TEM) of the nanocomposite Li_2O and Co_3O_4 powder

Cyclic voltammogram of nanocomposite cathode

- The oxidation peak is related to the charge process from Li₂O to Li₂O₂/LiO₂, whereas the reduction peak is related to discharge from Li₂O₂/LiO₂ to Li₂O.
- The voltage difference between the oxidation and reduction peaks is only 0.24 V, one-fifth of that for the Liair battery.

Transformation of the nanolithia composite cathode

The Raman spectra confirm that the peroxide and superoxide species exist in the confined amorphous solid

In situ Raman at different charge/discharge states

⁶Li NMR on the washed cathode at different SOCs

⁶Li NMR of cathode at different SOC after DME washing

 NMR measurement during cycling shows that Li₂O is oxidized during the charge process to form Li₂O₂

ESR of the cathode before and after charge

- *ab initio* calculated ESR values for orthorhombic bulk LiO₂ (g = 2.085) prove the existence of an amorphous LiO₂ component. $g_{LiO_2} = 2.07848$ Charge to 600 mAh/g
- Based on the NMR and ESR data, the deeply charged cathode electrode, contains an amorphous Li₂O/Li₂O₂/LiO₂ mixture stabilized by interfacial wetting.

Electrochemical performance of a full-cell battery using an $Li_4Ti_5O_{12}$ anode

Full-cell capacity loss only 1.8% after 130 cycles

a, Charge/discharge curves b, cycling performance versus $Li_4Ti_5O_{12}$ anode, whose Li capacity is only 110% that of the NC-67 cathode capacity.

Stabilizing Lithium superoxide using Ir nanoparticles catalyst: follow-up on role of Ir

- In previous work (Lu, Amine, Curtiss et al, Nature 2016) we reported on a Li-O₂ cathode with Ir nanoparticles on an rGO cathode that gives LiO₂ as the discharge product based on DEMS, XRD, EPR, Raman, and titration data
- The Ir nanoparticles become an Ir₃Li intermetallic that seem to template crystalline LiO₂ growth
- This significantly reduces the charge overpotential from >4 V for rGO to under 3.5 V
- Cell configuration: tetraglyme (ether) and LiTFSI electrolyte; lithium anode

Cathode: Ir nanoparticles on rGO with a range of sizes that result in lithium superoxide as a discharge product

 We have carried out follow-up studies of how the Ir nanoparticles become lithiated during discharge using Ir nanoparticles of size 1.5 nm

Lithium superoxide based Li-O₂ battery with a cathode based on 1.5 nm Ir clusters

- 1.5 nm nanoparticles give low charge potentials similar to our previous studies using a range of sizes
- Characterization showed the discharge product to be lithium superoxide
 - From DEMS, Raman, titration

a) an individual ~5x10 nm particle formed after second discharge; the upper left inset shows a fast Fourier transform (FFT) on the nanoparticle surface with the diffraction peaks consistent with Ir_3Li ; lower right inset shows a close up of the nanoparticle with a thin layer of ~1-2 nm marked by dashed cyan line on the surface of the nanoparticle, which may be due to the discharge product; b) the lattice spacing of ~4.1 Å for the nanoparticle in **(a)**, which is identical with that of Ir_3Li ;

 TEM evidence shows that 1.5 nm Ir nanoparticles increasse in size to ~5-10 nm and Li becomes incorporated into the Ir to form Ir₃Li that can act as a template for LiO₂ formation

Thermodynamics for Ir3Li formation from LiO2 and Ir

 The Ir₃Li formation from interaction of LiO₂ and Ir was investigated computationally by two approaches

Ab initio MD simulation of a model cluster showing Li atoms (green) intercalating into a Ir cluster

Formation energy for $LiO_2 + 3Ir -> Ir_3Li + O_2 -5.90 eV$

DFT energies of reactants indicate that the reaction of $LiO_2(s)$ and Ir(s) is thermodynamically very favorable

The evidence indicates that the unstable nature of LiO₂, an initial discharge product, can react with Ir to form the Ir₃Li intermetallic that generates the template for stabilization of further LiO₂ growth which will be used as cathode for the close system in the future

 (LiO2 +Li -----Li2O2)

Stabilizing Lithium superoxide using Ir nanoparticles catalyst: follow-up on role of Ir

- In previous work (Lu, Amine, Curtiss et al, Nature 2016) we reported on a Li-O₂ cathode with Ir nanoparticles on an rGO cathode that gives LiO₂ as the discharge product based on DEMS, XRD, EPR, Raman, and titration data
- The Ir nanoparticles become an Ir₃Li intermetallic that seem to template crystalline LiO₂ growth
- This significantly reduces the charge overpotential from >4 V for rGO to under 3.5 V
- Cell configuration: tetraglyme (ether) and LiTFSI electrolyte; lithium anode

Cathode: Ir nanoparticles on rGO with a range of sizes that result in lithium superoxide as a discharge product

 We have carried out follow-up studies of how the Ir nanoparticles become lithiated during discharge using Ir nanoparticles of size 1.5 nm

Lithium superoxide based Li-O₂ battery with a cathode based on 1.5 nm Ir clusters

- 1.5 nm nanoparticles give low charge potentials similar to our previous studies using a range of sizes
- Characterization showed the discharge product to be lithium superoxide
 - From DEMS, Raman, titration

a) an individual ~5x10 nm particle formed after second discharge; the upper left inset shows a fast Fourier transform (FFT) on the nanoparticle surface with the diffraction peaks consistent with Ir_3Li ; lower right inset shows a close up of the nanoparticle with a thin layer of ~1-2 nm marked by dashed cyan line on the surface of the nanoparticle, which may be due to the discharge product; b) the lattice spacing of ~4.1 Å for the nanoparticle in **(a)**, which is identical with that of Ir_3Li ;

 TEM evidence shows that 1.5 nm Ir nanoparticles increasse in size to ~5-10 nm and Li becomes incorporated into the Ir to form Ir₃Li that can act as a template for LiO₂ formation

Thermodynamics for Ir3Li formation from LiO2 and Ir

 The Ir₃Li formation from interaction of LiO₂ and Ir was investigated computationally by two approaches

Ab initio MD simulation of a model cluster showing Li atoms (green) intercalating into a Ir cluster

Formation energy for $LiO_2 + 3Ir -> Ir_3Li + O_2 -5.90 eV$

DFT energies of reactants indicate that the reaction of $LiO_2(s)$ and Ir(s) is thermodynamically very favorable

The evidence indicates that the unstable nature of LiO₂, an initial discharge product, can react with Ir to form the Ir₃Li intermetallic that generates the template for stabilization of further LiO₂ growth which will be used as cathode for the close system in the future

 (LiO2 +Li -----Li2O2)

Exploring novel NaO₂ based closed batteries

F

reaction coordinate

 The difference of 12.2 kJ mol⁻¹ between NaO₂ and Na₂O₂ indicates that it is possible to have both as the products in Na-O₂ batteries:

candidate for the close system.

Na + $O_2 \leftrightarrow NaO_2$ (E⁰=2.27 V, 1-electron transfer reaction) 2Na + $O_2 \leftrightarrow Na_2O_2$ (E⁰=2.33 V, 2-electron transfer reaction)

Stabilizing NaO₂ in Na-oxygen batteries

Stainless steel cell

Na-O₂ cell assembly: Anode-Na metal; Cathode-porous carbon substrate and ultrahigh purity O₂; Separator-glass fiber; Electrolyte-1 M Na triflate in DEGDME.

- The Na-O₂ battery shows a long cycle life of 118 cycles and it has a low charge overpotential.
- Coulombic efficiency of the Na-O₂ battery is mostly over 95%.

Characterization of NaO₂ in Na-oxygen batteries

Ę

 GITT shows the equilibrium potential of the reaction in Na-O₂ battery is 2.27 V, which is consistent with the 1 electron transfer reaction of NaO₂ formation.

 SEM of the discharged air electrode shows the cubic morphology of the product, which is a typical structure of NaO₂.

Go to "Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

Characterization of NaO₂ in Na-oxygen batteries

F

- XRD and Raman show that NaO₂ is the sole discharge product. No other products are detected.
- We successfully achieve the 1 e transfer reaction:

$$Na + O_2 \leftrightarrow NaO_2$$

Go to "Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

Na-O₂ Battery (Close System) - Next Step

F

Since NaO₂ has been stabilized in Na-O₂ batteries, we will explore novel NaO₂ based closed batteries.

Discharge Product	Reaction	Delta G / KJ/mol	E°/ V	z	Specific Capacity / mAh/g	Theor. energy density / Wh/kg
NaO ₂	$Na + O_2 \rightarrow NaO_2$	-218.76	2.27	1	488.21	1108.22
Na ₂ O ₂	$2Na + O_2 \rightarrow Na_2O_2$	-449.72	2.33	2	689.00	1605.37
Na ₂ O	2Na + ½ O_2 → Na ₂ O	-376.30	1.95	2	867.38	1691.38
Na ₂ O ₂	$Na + NaO_2 \rightarrow Na_2O_2$	-230.96	2.39	1	344.69	823.83
Na ₂ O	$3Na + NaO_2 \rightarrow 2Na_2O$	-533.84	1.84	3	1297.26	2386.96
Na ₂ O	$2Na + Na_2O_2 \rightarrow 2Na_2O_2$	-302.88	1.57	2	864.84	1357.80

- High specific capacity and energy density.
- Can reach >500 Wh/kg on the cell level
- No O₂ involved in the reactions, avoid the crossover effect
- Use conventional Na-ion configuration

Go to "Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

Response to last year reviewer's comments

No Comments from the Reviewers last year.

Collaborations with other institutions and companies

- J. Li, ANL
 - Development of new cathode materials based on Co₃O₄ as a substrate filled with Li₂O
- R. Shahbazian-Yassa, UIC
 - Characterization of discharge products and cathode materials
- J. G Wen, ANL
 - TEM characterization of discharge products and catalysts
- L. Hu, UM
 - Development of catalyst for Li-air batteries.
- S. Meng, UCSD
 - Development of new cathode materials based on MoS₂.
- Y. Wu, OSU
 - Stabilization of NaO₂ in Na-O₂ batteries.

Summary

- I. <u>Anion-redox cathode in lithium ion battery</u>
 - Nanoporous substrate Co_3O_4 filled with Li_2O served as a cathode in lithium closed battery.
 - Nanoporous substrate Co₃O₄ worked as a skeleton to promote the stable cycle between Li₂O, Li₂O₂ and LiO₂ without releasing/taking O₂ gas.
- II. <u>Lithium superoxide (LiO₂) stabilization</u>
 - Ir clusters with suitable particle size were found to be able to stabilize the LiO₂ in Li-O₂ battery using various characterization techniques.
 - Mechanism of stabilization was elucidated.
- III. <u>Stabilization of NaO₂ in Na-O₂ batteries</u>
 - NaO₂ was successfully stabilized in a well-sealed Na-O₂ battery.
 - Stabilized NaO2 will be used as cathode for the close system (NaO₂+Na-----Na₂O₂)

Proposed Future Work

- Systematic studies of electrolytes in superoxide based batteries
 - Effect on composition, cycle life, and efficiency
 - Computational studies to understand results
 - Design new electrolytes for optimal performance
- Conversion reaction between NaO₂ and Na₂O₂
 - Realizing the conversion reactions between $NaO_2/Na_2O_2/Na_2O$ in sodium ion battery
 - Optimizing the electrodes to improve the efficiency and cycle life
- Potassium superoxide cathodes for Li-ion cells
 - Investigating the feasibility of KO₂ cathodes for lithium closed cells
 - Optimizing size and loading of KO₂ to improve efficiency, capacity, and cycle life

Any proposed future work is subjected to change based on funding level