

INVESTIGATING THE STABILITY OF SOLID-SOLID INTERFACE

Zonghai Chen (PI)

Argonne National Laboratory 2019 DOE VTO Annual Merit Review June 3rd, 2020

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID: bat418

OVERVIEW

Timeline

- Start: 10/01/2019
- End: 09/30/2022
- 30% completed

Budget

- Total project funding
 - DOE \$410K (FY20)
 - Contractor \$ 0
- Funding received in FY19
 - N/A
- Funding for FY20
 - DOE \$410K

Barriers

- Barriers addressed
 - Performance: to achieve a high energy density by enabling lithium metal
 - Abuse tolerance: to improve the safety characteristics by reducing or illuminating the use of volatile solvents

Partners

- University of Arkansas
- Northern Illinois University
- Brookhaven National Laboratory

RELEVANCE

Objective:

• To characterize the physical/chemical properties of species at the solid/solid interfaces, and to fundamental understand the critic issues that limit the mechanical, chemical and electrochemical stability of solid/solid interfaces at the cathode and the anode.

Impact:

- To generate knowledge that supports the rational design of materials and process development;
- To establish structure-properties relationship of the interface;
- To understand the formation mechanism of lithium dendrite, and to predict potential solutions.

3

MILESTONES

Month/Year	Description of Milestone or Go/No-Go Decision	Status
December, 2020	Forming model Ta-LLZO/NMC622 interface for physical diagnosis	Completed
March, 2020	Investigating the interaction between Ta-LLZO and NMC622 at the interface upon cycling	On going
June, 202	Investigating the chemical reactions of Ta-LLZO at the reducing environment	On going
September, 2020	Investigating the chemical/mechanical stability of LI/Ta-LLZO interface	On schedule

APPROACH

- Multiple excitation sources will be utilized to probe the structure and properties of materials at the solid-solid interface.
 - > X-ray probes for local structure and chemical environment at the interface
 - > Electron probes for local morphology characterization
 - > Electrochemical probes for transport properties and chemical stability of the interface
 - ➤ In situ probes for dynamic properties of the interface
- Providing data feed to multiscale modelling team to extract physics behind the observation.

TECHNICAL ACCOMPLISHMENTS AND PROGRESS

Interaction between electrolyte and cathode during co-sintering

In situ high-energy X-ray diffraction during the co-sintering between LiCoO₂ and precursor for Al-doped LLZO

- Al-doped LLZO precursor (green powder) was provided by MERF (Dr. Joseph Libera).
- The green power converts to a cubic phase when sintered individually.
- ➤ LiCoO₂ powder was mixed with the green powder (50:50 by weight).
- Co-sintering process didn't change the structure of LiCoO₂, but a clear lattice expansion was observed.
- > c-LLAZO was not formed after the co-sintering.
- The adverse phase change can be originated from the uptake of Alspecies by LiCoO₂
- **Potential solution:** (1) using an alternative dopant, and (2) using cubic LLZO instead of precursor.

Co-sintering between Ta-LLZO and $LiNi_{0.6}Mn_{0.2}Co_{0.2}O_2$ (NMC622)

- The structures of both materials were well maintained after cosintering.
- Ta-LLZO particles were physically attached to NMC622 particle.
- ➤ No change on the NMC622 lattice parameters was visually observed.
- Ta-LLZO experienced unusual phase transformation at early stage, but maintained cubic phase after co-sintering.

Structure evolution of materials during co-sintering

During the co-sintering process,

- NMC622 experienced reversible thermal expansion/contraction during the co-sintering.
- ➤ TA-LLZO experienced irreversible phase transformation during the initial heating process (the big hysteresis loop below 700°C).
- ➤ Rietveld refinement showed Ta-LLZO was in cubic phase both before and after thermal treatment.
- ➤ A small amount of La₂Zr₂O₇ was observed after the thermal treatment.
- ➤ The origin of irreversible phase transformation and formation of La₂Zr₂O₇ deserves further investigation.

Electrochemical properties of Ta-LLZO decorated NMC622

- The assembling of all solid-state cell using the cosintered cathode and LLZO electrolyte was not successful. (The cell was electrochemically inactive.)
- The co-sintered pallet was grinded and used as a regular cathode materials, and then tested in liquid cells. The material with LLZO showed marginally improvement on the capacity retention.
- ➤ The decoration of LLZO on NMC622 doesn't hurt the electrochemical properties of NMC622.
- ➤ The failure mechanism of the solid-state cell is further investigated.

Common phase transformation for various doped LLZO

- In situ HEXRD was carried out different LLZO with Ta, Al, and Ga doping.
- All materials exhibited irreversible phase transformation below 700 °C.
- All materials generated La₂Zr₂O₇ impurity after thermal processing.
- These observation was attributed to the uptake of proton and generation of LiOH/Li₂CO₃ at the surface. (Supported by TGA data in next slide.)

Substantial mass loss during the thermal processing

- > Strong correlation between the mass loss and the phase transformation was observed.
- ➤ About 12-14% mass loss was observed for stored LLZO samples.
- > It is speculated that proton-lithium exchange occurred during the storing period.
- \triangleright Two-step reaction was observed, 1) reaction of H-bearing LLZO with LiOH (at ~400 °C), releasing H₂O;
- 2) reaction between oxides and Li_2CO_3 (at ~700°C), releasing CO_2 .
- All aged LLZO need thermal processing before direct use.

Hot-pressing LLZO pallets for use as separator

- A solid and mechanically strong pallet was obtained after hot-pressing (1000°C & 1000lb).
- From The pallet showed a trilayer structure, a thick dense and well crystallized layer in the middle; both sides are covered with a layer of different materials (~50 μm each).

The interface layers were $La_2Zr_2O_7 \cdot LLZO \cdot LZO \cdot LZO \cdot La_2O_3$

- ➤ The interface layer after hotpress is dominated by La₂Zr₂O₇ with a small amount of La₂O₃.
- The central layer remains cubic LLZO.
- The mechanism of Li₂O at the interface is not clear yet.

Stable lithium plating/stripping using Ta-LLZO electrolyte

- Ta-LLZO powder was hotpressed into a pallet.
- The surface layers were polished off before assembling symmetrical cells.
- The cell was cycled at a low current density of 0.1 mA/cm².
- Stable lithium plating/stripping was achieved.

TECHNICAL ACCOMPLISHMENTS AND

PROGRESS (CONTINUED)

Dendrite formed at a high current density

- ➤ Preliminary results from *ex situ* SEM study showed that lithium dendrite could grow inside the LLZO pallet.
- This observation needs to be reproduced.
- Measurement of critic current density is also important.

RESPONSES TO PREVIOUS YEAR REVIEWERS' COMMENTS

• This is the first year that the project is reviewed.

COLLABORATION S

- University of Arkansas (Prof. Xiangbo Meng)
 - Surface modification using atomic layer deposition (ALD) and molecular layer deposition (MLD)
- Northern Illinois University (Prof. Tao Li)
 - Powder characterizing using small angle X-ray scattering (SAXS)
- Brookhaven National Laboratory (Dr. Feng Wang, Dr. Xianghui Xiao)
 - Morphology characterization using in situ and ex situ transmission X-ray microscopy (TXM)
- Argonne National Laboratory (Dr. Anh Ngo, Dr. Larry Curtiss, Dr. Venkat Srinivasan, Dr. Nenad Markovic, Dr. Yang Ren, Dr. Yuzi Liu, Dr. Bryant Polzin, Dr. Joseph Libera)
 - Providing data feed for theory and modeling team (A.N., L.C., V.S., and N.M.)
 - Structure characterization using high energy X-ray diffraction (HEXRD) (Y.R.)
 - Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) (Y.L.)
 - Material processing (CAMPS, BP)
 - Material processing (MERF, JL)

REMAINING CHALLENGES AND BARRIERS

Degradation mechanism of aged LLZO powder during storage

- Specialization of aged samples
- Elucidating the impact of doping chemistry on degradation mechanism
- Exploring possibility to reverse the degradation process of aged LLZO powder

Chemical stability of LLZO at reducing environment

- Illustrating the decomposition mechanism of LLZO exposed to both reducing environment and high temperature
- Fundamental understanding and specialization of the reaction between lithium and LLZO electrolyte

Rooting the cause of lithium dendrite formation against LLZO

- Understanding the lithium plating/stripping behaviors below and above the critic current density
- Quantifying the role of electronic conductivity to the formation of lithium dendrite

PROPOSED FUTURE RESEARCH

- FY20: lithium plating/stripping behavior at high current density
 - *In situ* SEM/TEM to observe the rapid growth of lithium whiskers
 - Exploring the impact of doping chemistry on the formation of lithium whiskers
- FY21: quantifying structural and chemical stability of LLZO in adverse environments
 - In situ HEXRD to investigate the recovery of degraded LLZO
 - Focused beam HEXRD to investigate the structural heterogeneity at the solid/solid interface
 - Ex situ TXM to investigate the morphological change at the interface after lithium plating/stripping
 - Accessing the critic current density of LLZO electrolytes and the potential impact of doping chemistry

SUMMARY

- A physical interface between LLZO and NMC cathode can be formed by co-sintering.
- The creation of functional solid-solid interface is influenced by:
- 1) chemical reaction between LLZO and ambient air at the surface of LLZO;
- 2) decomposition of LLZO during thermal process of LLZO pallet;
- The lithium plating/stripping behavior shows strong dependence on the applied current density. Plating/stripping at high current density shows preliminary clue of outward dendrite formation (from electrolyte towards lithium foil). *In situ* SEM/TEM will be carried out to validate the observation.