Intelligent, grid-friendly, modular extreme fast charging system with solid-state DC protection

Srdjan Lukic, Principal Investigator (NCSU)

Team Members: V.R. Ramanan (ABB), Debrup Das (ABB), Alan Ettlinger (NYPA), Gregory Pedrick (NYPA), Iqbal Husain (NCSU), Wensong Yu (NCSU)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: Oct. 2018
- Project End Date: Dec 2021
- Percent Complete: 5%

Budget

- Total Project Funding
 - DOE Share: \$ 2,675,952
 - Contractor Share: \$ 3,323,775
- Funding for 2019
 - DOE Share: \$ 1,099,164
 - Contractor Share: \$ 1,336,347

Barriers

- Integration to utility at medium voltage
- DC protection
- System siting, integration and deployment

Partners

- NCSU/FREEDM Lead
- ABB
- NYPA

Relevance

Objectives:

- Develop an extreme fast charging (XFC) station with direct connection to the distribution network
- Demonstrate a improved efficiency and reduced footprint

Project Impact:

- Framework for designing XFC stations to minimize installation and operating costs, manage grid impact, and provide design flexibility
- Field demonstration of novel key enabling technologies for future XFC installations

Key Deliverables:

- Integrated XFC system operational in the field. System will be tested up to 1 MVA loading using a combination of resistive loads and EVs.
- Installation, operation and maintenance guidelines for deployment of XFC infrastructure with proposed unique architecture.

Approach

- Develop 1 MVA medium voltage XFC station with:
 - 1MVA bi-directional MV SST
 - DC distribution network with solid-state DC protection
 - Energy management platform
 - DC Nodes for local isolation and DC/DC conversion
- Deploy XFC system at a NY Power Authority (NYPA) site

Approach

System Development

System Integration

System Deployment

Deliver SST
 & DC node*

- Select site
- SST & DC nodes operational
- Deliver eng. diagrams

Complete system integration *

- Complete site preparation
 - Validate protection
 - Safety evaluation

• System
Commissioned

- Use cases tested
- Data collection

10/1/2018 – 12/31/2019

1/1/2020 - 12/31/2020

1/1/2021 - 12/31/2021

BP: Budget Period

* Denotes Go/No-Go Milestone

BP1

NY Power Authority NC STATE UNIVERSITY

Technical Progress

Building of Significant Team Expertise and Past Success

- NCSU SST development and prototyping, including 50kW MV charger prototype
- ABB has previously developed TRL 5 LVDC breaker rated at 1500 A. ABB will design two variants of the LVDC breaker at 1000 A & 350 A.
- NYPA experience in deploying EV infrastructure through NYS Evolve Program

Accomplishments

- Deployment Site Selected
- Initial scaled-down SST prototype under construction
- Leveraging ABB's experience in LVDC marine system to develop EVCI protection coordination
- Leveraging ABB new product line to de-risk DC Node development

Collaboration and Coordination with Other Institutions

- NCSU: SST, DC Node (DC/DC converter) development; XFC system integration.
- ABB: development and testing of the solid-state breakers and system protection scheme.
- **NYPA:** system deployment and demonstration.

Proposed Future Work

Key Challenges

- Design of the SST stage, meeting key safety requirements
- Design and packaging of solid state breaker
- Protection coordination
- Procuring vehicles capable of stressing the charger system

Future Work (BP1)

- Construct and demonstrate SST and DC Nodes
- Demonstrate solid state breaker in operation
- Initial protection coordination
- Site engineering drawings

Any proposed future work is subject to change based on funding levels

Summary

- Team on track to demonstrate a 1MVA charging station with
 - A MV SST that connects directly to distribution grid and
 - delivers a shared DC bus with allows for local energy management to alleviate stress on the grid
- Three year project plan:
 - 2019: Component Validation
 - 2020: System validation
 - 2021: System Deployment and Data Collection

Technical Backup Slides

Benefits of Medium Voltage XFC

State of the art Solution

Proposed Solution

Power: 720 kW Same power 700 kW

Volume: 12,910 L 3x volume reduction 4,110 L

Mass: 13,000 lb. 6x mass reduction 2,150 lb.

Efficiency: 92% 4x loss reduction 98%

Concrete pad: 177 sq. ft. 2.5x footprint reduction 70 sq. ft.

Schneider QED-2
Tesla Urban Supercharger
5 x 144 kW
AZZ
Trident
SPMG-315
SPMG-315

Benefits of Medium Voltage XFC

- 4x more power available in the same footprint
- 60% lower power losses in the equipment leading to higher revenue (lower operating costs)

State of the art Station

Proposed MV XFC Solution

Rated Power: 720 kW Rated Power: 2100 kW

