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Overview

Timeline Barriers
Project Start Date: FY11 * Cost - cooling loop components
Project End Date: FY14 * Life —thermal effects on energy

storage system (ESS) and
advanced power electronics and
electric motors (APEEM)

 Weight — additional cooling loops

Percent Complete: 35%

BUdgEt in electric drive vehicles (EDVs)
Total Project Funding: S 750 K*
Funding Received in FY11: $ 375 K* Partners
Funding for FY12: S 375 K*

e Interactions/collaborations
_ uDetroit 3)/ OEM ) CRADIA isin
pproval process
— Visteon Corp.
— Magna Steyr

e Project lead: NREL

* Shared funding between VTP programs: VSST, APEEM, ESS




Overview — Collaboration Between Vehicle Technology Programs

Hybrid Electric Systems
Dave Howell — Team Lead
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Relevance — The PHEV/EV Thermal Challenge

* Plug-in hybrid electric vehicles (PHEVs) and electric
vehicles (EVs) have increased vehicle thermal
management complexity

— Separate coolant loop for APEEM
— Thermal requirements for ESS

* Additional thermal components result in higher costs
 Multiple cooling loops lead to reduced range due to

— Increased weight
— Energy required to meet thermal requirements

* Since thermal management crosses multiple groups at
automobile manufacturers, cross-cutting system designs
are challenging

Photo Credit: Mike Simpson, NREL
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Relevance/Objective

Objective

* Collaborate with industry partners to research the
synergistic benefits of combining thermal management
systems in vehicles with electric powertrains

Targets

* Improve vehicle performance and reduced cost from the
synergistic benefits of combining thermal management
systems

* Reduce volume and weight

 Reduce APEEM coolant loop temperature (less than 105°C)
without requiring a dedicated system
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Approach — Overall

e Build a 1-D thermal model (using KULI software)

— APEEM, energy storage, engine, transmission,
and passenger compartment thermal
management systems

— Identify the synergistic benefits from combining
the systems

— Perform a detailed performance assessment
with production-feasible component data

* Conduct bench tests to verify performance and
identify viable hardware solutions

e Collaborate with automotive manufacturers and
suppliers on a vehicle-level project

* Solve vehicle-level heat transfer problems, which

will enable acceptance of vehicles with electric
powertrains

Photo Credit: Charlie King, NRELc
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Approach FY12 — Go/No-Go

2011 2012
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

KULI Model >

Bench Test Combined Fluid Loops >
N\
Go
No Go
Decision
Point
Document
results
Go/No-Go Decision Based on the outcome of analysis of the thermal management system
Point: concepts, assess if building a benchtop system is justified or if further

analysis is needed

Challenges / Barriers:  * Integration of requirements and coordination of the diverse groups that
have thermal management activities at the automotive OEMs and DOE
* Meeting the heat load requirements of the APEEM components, battery,
engine, and passenger compartment with a thermal management
system that is less costly and complex
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Approach — Analysis Flow Chart

Lee Slezak, David Anderson
Vehicle Systems

ESS Waste Heat

FASTSim — Vehicle
Susan Rogers

Cost/Performance Power Electronics KULI Thermal
Model

Model

APEEM Waste Heat —|: Motor Waste Heat =——p

Inverter Waste Heat

\ 4
Temperatures

Range
Cost Power Demand of Vehicle Thermal Systems

<

Battery Life Battery Life Model

* Leverage existing DOE projects

— Vehicle cost/performance model

Brian Cunningham
Energy Storage

— Lumped parameter motor thermal model
— Battery life model

FASTSim = Future Automotive System Technology Simulator
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March 2011 - Solid Foundation for March 2011 - March
2012 Research

 Thermal component and system information
— Visteon Corp. (Tier 1 HVAC component supplier)
— Drawings
— Thermal and flow component data
— System data

* Built components in KULI
— Used geometry, heat transfer, pressure drop, etc.
— Verified component functioning as expected

* Developed A/C, cabin thermal, and APEEM cooling
loop models

— Connected components
— Compared to test data
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Improvements to Models

* Improved electric motor model
 Added inverter model

* Updated FASTSim model (heat generated for ESS
and APEEM components)

* Improved A/C compressor control

* Adjusted heat exchanger air-side positions to
more closely match current EVs

 Developed hot and cold design cases
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ESS Cooling Loop Model Battery Jacket Cooled by a Chiller
(WEG to Refrigerant Heat Exchanger) or a Radiator
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A/C System Model
Added Chiller Branch for ESS Cooling Loop
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Baseline A/C, Cabin, ESS, and APEEM Cooling Loops
Liquid Circuits Combined into a Single Simulation
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Baseline A/C, Cabin, ESS, and APEEM Cooling Loops
Air Side — Low Temperature Radiators Behind Condenser
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Baseline EV Thermal Management System
EV Test Case at Four Ambient Temperatures
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Photo Credit: John Rugh, NREL

NATIONAL RENEWABLE ENERGY LABORATORY 15



Baseline System
At Higher Ambient Temperatures, Cabin is still Warm after 10 min.
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Baseline System
Battery Cells Cool Quickly with the Chiller
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Baseline System
Battery Cells Cool Quickly with the Chiller
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35¢C Ambient — Cabin and ESS Cooling

Initially Less Than 50% of the A/C System Capacity is Going to the Cabin

7
I Evaporator
Chiller

(3]
|

H
]
1

w
|

Heat Transfer (kW)

N
|

0 100 200 300 400 500 600
Time from start of cooldown (sec)

NATIONAL RENEWABLE ENERGY LABORATORY



35¢C Ambient — Cabin and ESS Temperatures

Tradeoff between Battery Cooling and Thermal Comfort
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Baseline System

Electric Motor Temperatures
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* ). Lindstrom, “Thermal Model of a Permanent-Magnet Motor for
a Hybrid Electric Vehicle,” Chalmers University of Technology,
Goteborg, Sweden, 1999
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Baseline System
APEEM Fluid Temperatures — Critical to Inverter Maximum Temperature \/
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Baseline System
VTM Power including Compressor, Fans, Blowers, Pumps
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VTM Power including Compressor, Fans, Blowers, Pumps

Baseline System * ﬂ
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Baseline EV Thermal Management System
EV at Davis Dam — Exploring the Hot Design Limits
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Baseline System - Davis Dam
In extreme conditions, APEEM components within thermal limits
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Baseline EV Thermal Management System %

EV at Bemidji — Exploring the Cold Design Limits
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Collaboration

* Visteon Corp.

— Data

— Engineering support

“Detroit 3” OEM — CRADA is in approval process

* Maghnha Steyr
— KULI software
— Engineering support

VTP Tasks

— Vehicle Systems
— Energy Storage
— Advanced Power Electronics and Electric Motors
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Future Work

e Using the KULI model, analyze concepts for combining
cooling loops
— Assess benefits
o Maximum temperatures
o Battery life
o Cost
o Range

— Add new components
— Improve model as required

* Based on the analysis results, select, build, and evaluate
prototype systems in a lab bench test to demonstrate the
benefits of an integrated thermal management system

* Lead a vehicle-level project to test and validate
combined cooling loop strategies
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Summary

 DOE Mission Support

— Combining cooling systems in EDVs may reduce costs and
improve performance, which would accelerate consumer
acceptance, increase EDV usage, and reduce petroleum
consumption

* Overall Approach

— Build a thermal 1-D model (using KULI software)

o APEEM, energy storage, engine, transmission, and passenger
compartment thermal management systems

o ldentify the synergistic benefits from combining the systems
— Select the most promising combined thermal management

system concepts and perform a detailed performance
assessment and bench top tests

— Solve vehicle-level heat transfer problems, which will enable
acceptance of vehicles with electric powertrains
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Summary (cont.)

* Technical Accomplishments

Developed a modeling process to assess synergistic benefits of combining
cooling loops

Improved A/C, cabin, APEEM cooling loop KULI models and built ESS cooling
loop KULI models

Assembled the KULI models into a baseline simulation of a Nissan Leaf-sized EV

o Produced reasonable component and fluid temperatures

Assessment of combined cooling loop concepts underway

* Collaborations
— Collaborating closely with OEM, Visteon Corp. and Magna Steyr
— Leveraging previous DOE research

o Battery life model
o Vehicle cost/performance model
o Lumped parameter motor thermal model

— Co-funding by three VTP tasks demonstrates cross-cutting
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