Lawrence Livermore National Laboratory

Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC

Matthew McNenly (PI), Russell Whitesides, Daniel Flowers and Salvador Aceves

Project ID # ACE076

2012 DOE Vehicle Technologies Program

Annual Merit Review and Peer Evaluation Meeting

May 15, 2012 - Washington, DC

This presentation does not contain any proprietary or confidential information

LLNL-PRES-593472

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Overview

Timeline

 Ongoing project with yearly direction from DOE

Budget

- FY11 funding: \$300K
- FY12 funding: \$340K

Barriers

- Inadequate understanding of the fundamentals of HECC
- Predictive simulation of detailed fluid/chemistry coupling takes approx. a decade on a workstation
- Current combustion software doesn't take advantage of new CPU/GPUs

Partners

- Sandia, Oak Ridge, Los Alamos
- Ford, GM, Bosch, Volvo
- UC Berkeley, Univ. of Wisconsin, Univ. of Michigan, Lund Institute of Tech., Chalmers Univ. and UC Merced
- FACE working group, AEC MOU, SAE

Relevance to DOE objectives – ACE R&D subprogram

- Reducing the computational cost to solve detailed chemical kinetics provides more predictive power to all levels of HECC model fidelity (0-D to fully coupled CFD/detailed chemistry) and computing resources (workstation to supercomputer).
- Adapting combustion algorithms to massively parallel computing architecture ensures that the predictive power of our simulations can benefit from new technology growth.
- By providing fast combustion chemistry solvers to engine designers and researchers, we can accelerate progress on three major challenges identified in the VTP multi-year program plan:
 - A. Lack of fundamental knowledge of advanced engine combustion regimes
 - C. Lack of modeling capability for combustion and emission control
 - D. Lack of effective engine controls

Objective: Accelerate research in advanced combustion regimes by developing faster and more predictive engine models

Milestones: new algorithms have demonstrated orders of magnitude speedup and been coupled to CFD

Approach: bring high fidelity combustion simulations to the desktops of collaborators in industry, academia and national labs

- Gain fundamental and practical insight into High Efficiency Clean Combustion (HECC) regimes through numerical simulations and experiments
- Develop and apply numerical tools to simulate HECC by combining multidimensional fluid mechanics with chemical kinetics
- Reduce computational expense for HECC simulations
- Democratize simulation: bring computational tools to the desktop PC
 - FY12 release WSR and multizone (GT-Power linkable) models to MOU partners

Challenge: Enhanced understanding of HECC requires computationally expensive models fully coupling detailed kinetics with CFD

300,000 Pflop/s (chem-only), roughly a decade on current 12-core workstations
Lawrence Livermore National Laboratory
McNenly, et al. LLNL-PRES-593472

Not available for design

Objective: Bring the most physically accurate combustion models to engine designers and researchers

Technical Accomplishments: new algorithms have demonstrated orders of magnitude speedup and been coupled to CFD

New thermochemistry software is needed to explore preconditioners and develop solvers for future computing architectures

- 1. Easier access to the Jacobian information on-the-fly
 - Less time spent experimenting with new preconditioner and solver strategies
 - More robust kinetic mechanism diagnosis important as the number of species and reactions continue to grow
- 2. Data structures optimized to current and future computing architectures
 - Multi-core CPU and GPU
 - Should still provide a high-level function interface for users that just want to model combustion
- 3. Need an open source thermochemistry software to combine with the improved solvers for the widest distribution

New LLNL thermochemistry software offers speedup over other open source codes for calculating ODE system derivatives

Implicit methods are necessary to integrate the chemical time scales over an engine cycle

Jacobian matrix construction/solution is more than 95% of the simulation cost for large mechanisms – why?

Lawrence Livermore National Laboratory McNenly, et al. LLNL-PRES-593472

1. Construct J matrix from the thermodynamic state:

$$p, T, y_1, ..., y_N \implies J =$$

- \bigstar 2. Factor the J matrix into lower and upper triangle matrices

3. Iterate to the next step with \bigcirc backward solution to Jx = b

$$y = b$$
 $x = b$

What is the physical meaning of the Jacobian?

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \frac{\partial f_N}{\partial x_2} & \cdots & \frac{\partial f_N}{\partial x_N} \end{pmatrix}$$

Element: $J_{i,j} = \frac{dW_i}{dC_j}, \quad W_i = \frac{dC_i}{dt}$
Magnitude represents the characteristic frequency at which the two species are coupled

Lawrence Livermore National Laboratory McNenly, *et al.* LLNL-PRES-593472

1(

Approximate Jacobians can be used to precondition iterative linear system solvers like GMRES

Direct reaction sorting shows promise to be a general low-cost preconditioner for the Jacobian

The dominant eigenstructure can be effectively captured with a preconditioner with less than 10% of the non-zero terms

New thermochemistry software will enable future solver gains and already delivers and order of magnitude speedup

Collaboration: We have ongoing interactions Industry, National Labs, and Universities

- **Convergent Science Inc**; Multi-zone model development
- Advanced Engine Combustion (AEC) working group (Industry, National labs, Univ. of Wisc.); biannual presentations
- Fuels for Advanced Combustion Engines (FACE) working group
- Sandia National Laboratory; researchers on HCCI and PCCI, gaseous injection simulations
- Oak Ridge National Laboratory; SI-HCCI transition and ¹⁴C exhaust analysis for HCCI and Diesel engines
- Los Alamos National Laboratory; Kiva4 development
- Other Universities: UC Berkeley, University of Wisconsin, University of Michigan, Lund Institute, Chalmers University, Tianjin University, and UC Merced
- Ford; gaseous direct injection
- **Delphi**; direct injection
- Bosch; High Performance Computing of HCCI/SI transition
- **GM**; Diesel engine
- Volvo; multi-zone cycle simulation

Lawrence Livermore National Laboratory

Future Work: We will explore strategies for improving efficiency of CFD and chemistry simulations

- Improved chemical reactor integration
 - Sparse preconditioners (CPU & GPU)
 - Efficient data structures
 - Hybrid time-stepping solvers
 - New integration error control logic
 - New non-linear solvers
- Improved parallel engine CFD
 - Multi-criteria multi-zone
 - More accurate multi-zone remap
 - Perturbed reactor integrator restart
 - Particle motion/collision algorithms (CPU & GPU)
- Making high fidelity combustion simulations available on a PC desktops
 - FY12 release WSR and multizone (GT-Power linkable) models to MOU partners
 - FY13 release fully-coupled CFD/multizone solver to MOU partners and interested software companies (move to open source)

Lawrence Livermore National Laboratory

McNenly, et al. LLNL-PRES-593472

Summary: We will continue our research for better algorithms to accelerate the development and design of efficient engines

Technical Back-Up Slides

The evolution of the Jacobian is similar for different equivalence ratios except near equilibrium

 ϕ = 0.25, p = 2 bar

$$\phi$$
 = 1, p = 2 bar

The evolution of the Jacobian is similar for different equivalence ratios except near equilibrium

 ϕ = 0.25, p = 2 bar

$$\phi$$
 = 1, p = 2 bar

The evolution of the Jacobian is similar for different equivalence ratios except near equilibrium

 ϕ = 0.25, p = 2 bar

$$\phi$$
 = 1, p = 2 bar

The evolution of the Jacobian is similar for different pressures except near equilibrium

 ϕ = 1, p = 2 bar

φ = 1, p = 20 bar

The evolution of the Jacobian is similar for different pressures except near equilibrium

 ϕ = 1, p = 2 bar

 ϕ = 1, p = 20 bar

The evolution of the Jacobian is similar for different pressures except near equilibrium

 ϕ = 1, p = 2 bar

 ϕ = 1, p = 20 bar

