ENERGY EFFICIENCY RESEARCH AND DEVELOPMENT FOR FLUID-POWER SYSTEMS IN OFF-ROAD VEHICLES

# Hybrid Hydraulic -Electric Architecture for Mobile Machines

## PI: Perry Y. Li University of Minnesota 6.13.2019 (DE-0008384)

This presentation does not contain any proprietary, confidential, or otherwise restricted information







UNIVERSITY OF MINNESOTA

# OVERVIEW

## Timeline

- Project start: 9.1.2018
- Project end: 8.31.2021
- Percent complete: 20%

### Budget

- Total project funding:
  - DOE share \$ 1.50M
  - Contractor share \$ 386k
- Funding for FY 2018:
- Funding for FY 2019:

## Barriers :

- System efficiency
  - Currently only 20%
- Cost of electrification
  - Expensive for high power app.
- Control performance
  - Improve or maintain

## Partners :

- U Minnesota (Lead, ME,EE) • Li, Van de Ven, Mohan
- U Wisconsin, Madison (EE) • Severson
- Eaton Corporate R&D

   Wang
- OEMs: Bobcat, CNH, JCB, Toro



## Relevance

- Off-road vehicles (construction, agriculture, turf, mining, forestry, etc.) use **hydraulics** for high power
- Efficiency from engine output to load only 20%
  - $\circ$  E.g. 20-30ton excavators alone consume 300 trillions BTU/ yr
  - Throttling control precise but inefficient
  - $\circ$  Hydraulic components low efficiency at partial load
- Electrification can improve efficiency but costly, bulky for high power high torque applications (limit ~20kW)

### <u>Hydraulics</u> and **Electric** actuations are complementary:

- Hydraulic +unsurpassed power/ force density; robust; familiar
  - inefficient; poor energy storage density
- Electric +good efficiency, control perf., storage density
  - Low power/ torque density; high cost



## Project objective:

Demonstrate a target efficiency of ≥65% in off-highway vehicles through development of an **integrated hydraulic and electric system architecture** applicable to a wide range of multidegree-of-freedom mobile machines.

**Benefits** : High power, high efficiency at low cost; keep electric machines at fraction of size; improved component efficiency and power density; increase productivity

### Societal Impact:

- > 3x fuel saving, reduction in harmful emission
- Can be deployed in many machines in different sectors



# Approach

Develop a novel system architecture that combines hydraulic and electric actuations complementarily

- Hydraulic provides <u>majority</u> power;
- Electric modulates the power, exerts fine control
- <u>Tightly integrated</u> hydraulic-electric energy conversion m/ c





# Features of HHEA approach

- Marries benefits of hydraulic power (power density) with electric power (control performance)
- Avoids large expensive electric components
- Efficiency benefits:
  - Throttle-less;
  - Captures regenerative energy
  - Components operate more efficiently
- Control performance benefits:
  - High bandwidth control via electric drive M
- Tight integration of electric/hydraulic m/c
  - Increase power-density
  - Reduce losses
  - Reduce size & cost
- Module --> applicable to many machines

Tight -

5MPa

## **Research Plan**

- Thrust A : Analyze energy saving potentials of proposed hybrid hydraulic-electric architecture for mobiles machines in different sectors
- Thrust B : Develop control algorithm for proposed system architecture to achieve both efficiency and fast & precise control performance
- Thrust C: Develop a tightly integrated electric-hydraulic conversion machine with high efficiency and power density

#### **BP1: Feasibility:**

- Establish feasibility and determine initial designs and target platforms. **BP2: Preliminary validation**
- Preliminary validation of efficiency and design approach
- Hardware-in-loop test
- **BP3: Refined validation**
- Further experiments; test interactions between outcomes of the 3 thrusts.



# BP1 (feasibility) Tasks:

Thrust A: Energy saving

- Identify 3+platforms from various sectors for analysis; → Milestone 1
- Develop energy saving evaluation tool → Milestone 2
- Estimate energy saving potentials for identified platforms

Thrust B: Control performance

- Develop control oriented system model
- Identify appropriate control strategy → Milestone 3

Thrust C: Compact integration

- Develop models for key electrical/ hydraulic components
- Identify electric and hydraulic topologies for integration  $\rightarrow$  Milestone 4

Go / NoGo: Analysis predicts: 1) At least 1 platform >65% efficiency or >40% energy saving; 2) Integrated Elect/ Hydraulic M/ C: >5kW/ kg energy density and conversion efficiency > 85%



## Milestones

| Budget   | Description                                                                                                                                                                                                                                                                          | Scheduled              | Status                                                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Period   |                                                                                                                                                                                                                                                                                      | <b>Completion Date</b> | Status                                                                                                                |
| 1        | Initial platforms selected.                                                                                                                                                                                                                                                          | 12/1/18                | Target platforms selected.                                                                                            |
| 1        | Optimal design tool established.                                                                                                                                                                                                                                                     | 3/1/19                 | Optimal design tool selected.                                                                                         |
| 1        | Nominal HECM control strategy developed.                                                                                                                                                                                                                                             | 6/1/19                 | Nominal control strategy studies<br>underway. Verbal progress update will be<br>provided during review.               |
| 1        | Select integration topology (rotary or linear).                                                                                                                                                                                                                                      | 9/1/19                 | Both linear and rotary topologies under<br>study with the rotary concept being<br>identifed as the leading candidate. |
| Go/No Go | At least one platform with potentials of reaching 65%<br>efficiency or 40% energy saving ; HECM control strategy<br>verified in simulation; preliminary analysis shows<br>selected integration topology has the desired power<br>density of 5kW/kg and conversion efficiency of 85%. | 9/1/19                 | tbd                                                                                                                   |
| 2        | Pareto optimal analysis tool                                                                                                                                                                                                                                                         | 12/1/19                | tbd                                                                                                                   |
| 2        | Subsystem model analysis                                                                                                                                                                                                                                                             | 3/1/20                 | tbd                                                                                                                   |
| 2        | Design space explored within the multi-physics optimization framework.                                                                                                                                                                                                               | 6/1/20                 |                                                                                                                       |
| 2        | integration prototype created                                                                                                                                                                                                                                                        | 9/1/20                 | tbd                                                                                                                   |
| Go/No Go | At least one target platform verified with high fidelity<br>simulation; control verified on HIL setup; detailed analysis<br>of integrated HECM predicts gravimetric power density<br>5kW/kg and conversion efficiency of 85%.                                                        | 9/1/20                 | tbd                                                                                                                   |



## **Technical Accomplishments & Progress**

- A1: Identify >3 platforms for analysis
  - Survey of different off-road vehicle sectors complete
  - 5 platforms with good potentials identified for study:
    - Construction: JCB 26ton excavator; CNH wheel Loader;
    - Agriculture: CNH Early Riser Planter
    - Turf: Toro Wide Area Mower
    - Material handling: JCB telehandler











### **Technical Accomplishments & Progress** - A2: Develop energy saving evaluation tool

**Motivation**: Energy saving evaluation of system architecture requires a) designing and b) controlling system optimally.

### Accomplishments:

- 1. Created rapid inner loop algorithm (via Lagrange multiplier method) to determine optimal control to minimize energy use
- 2. Coupled with outer loop outer design (sizing, system parameters, etc.)
- 3. Compare results with a base line load-sensing architecture and direct electrification for a pilot system





## **Technical Accomplishments & Progress** - A2: Develop energy saving evaluation tool (Sample results)



- HHEA consumes 70% less energy than baseline load sensing
- HHEA requires 66% smaller e-machines



### E-motor requirements:

- Direct Electrification 48kW, 420Nm
- Proposed HHEA: 15kW, 135Nm

## **Technical Accomplishments & Progress** - B1: Identify nominal control strategy

- The nonlinear passivity based backstepping control approach using the natural compressibility energy in the fluid has been identified as the basic control strategy
- Advantages: robust and high performance; has been applied with other system architectures



### **Technical Accomplishments & Progress** - C1: Hydraulic subsystem modeling / topology selection

- Rank and selected gerotor and radial piston pump/motor as two most promising topologies for integration with electric machine for HHEA
- Constraints for interfacing with electric analyzed:
  - Radial ball piston complements an axial flux electric topology
  - Moment of inertia stays small across a wide speed range
  - Electric motor magnet placement and hydraulic pump diameter scale together
- Modeling of hydraulic topology consider valve timing, pressure dynamics, leakage, friction and scaling effect





### **Technical Accomplishments & Progress** - C2: Electric subsystem modeling / topology selection



- Modeling and initial design space exploration
  - Electric machine designed and modeled in Finite Element Analysis (FEA)
  - Preliminary multi-objective optimization (efficiency, torque/rotor vol, torque ripple)
  - Design parameters: 4 pole, PMSM motor, 15,000rpm, Arnold Arnon-7 steel, Recoma-35E magnets
  - Optimal design has efficiency > 96%





#### 16

## **Technical Accomplishments & Progress**

- C2: Electric subsystem modeling / topology innovation
  - A novel electric machine topology sized analytically:
    - Higher power density
    - Lower moment of Inertia
  - Design Parameters:
    - *Type:* **8 pole**
    - Stator type: Ironless
    - Max rotational speed: 15,000 RPM
    - Steel used: Arnold Magnetics Arnon-7
    - Magnets used: Arnold Recoma-35E
  - Modeled and Finite Element Analysis (FEA) performed
  - Very Promising candidate- Exact topology under IP Disclosure process.
  - Initial sizing relations for Power Electronics obtained
    - Machine parameters essential for accurate sizing & modeling being obtained from transient FEA.
      - UNIVERSITY OF MINNESOTA





## **Response to Previous Year Reviewer Comments**

• This project is a new start



## **Partners/Collaborators**

| University of Minnesota | Lead PI institution. Responsible for system level<br>modeling and control, power electronics modeling and<br>selection and mechanical design aspects of integrated<br>electric motor – pump (EMP). |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Co-PI institution. Responsible for electric motor modeling and design of the EMP.                                                                                                                  |
| Bobcat. UCE             | OEM manufacturers. Responsible for vehicle system requirements, duty cycle requirements and voice of the customer.                                                                                 |
| FATON                   | Hydraulic components manufacturer. Responsible for providing support to hydraulic component and system modeling, and prototype testing.                                                            |
| Consultant              | Retired hydraulic industry expert in product development. Responsible for overall project management and OEM coordination.                                                                         |



## **Remaining Challenges and Barriers**

- Analysis and prediction of performance and energy saving potential of proposed system architecture requires accurate component models and representative duty cycles.
  - Mitigation: Team will work closely with OEM and industry partners to obtain accurate models and useful duty cycles.



## **Proposed Future Research**

#### Any proposed future work is subject to change based on funding levels

### Ongoing (BP1): FY18/19:

- 1A.3: Evaluate energy saving potential for selected platforms; down-select for analysis in BP2
- 1B.3: Complete nominal control strategy development → Milestone 3 (nominal control)
- 1B.4: Verify control strategy through simulations under certain and uncertain parameter scenarios
- 1C.1: Refine and integrate hydraulic and electric subsystem models for combined design optimization → Milestone 4 (select integration topology)

#### Proposed (BP2): FY19/20:

- 2A.1: Perform optimal trade-off analysis for different design decisions w.r.t. multiple objectives (efficiency, cost, complexity, etc. ). BP1 focuses mainly on efficiency.
- 2B.1/2: Experimentally verify control strategy on hardware-in-the-loop setup
- 2C.1: Validate electric and hydraulic subsystems on benchtop experiments
- 2C.2/3/4 Conduct multi-physics hydraulic-electric optimization for combined machine and create detailed design of integrated prototype.





## **Summary**

#### **Relevance:**

- Off-road vehicles require hydraulics to provide high power but are inefficient
- Electrification is challenging due to cost of high power/torque electric machines
- Proposed architecture blends hydraulic and electric actuations to provide for significantly improved efficiency; improved control performance; while minimizing need for high power electric machines.

#### Accomplishments / future work

- Energy saving evaluation tool developed & ready for selected platforms
- Control strategy identified and to be verified on hardware-in-the-loop testbed
- Electric and hydraulic subsystems topologies being analyzed for tight integration.



## **Technical Backup Slides**



# **Platform Selection Criteria**

- 1. Potentialfor significant energy savings
- 2. Requirementor control performance
- 3. Compatibility of proposed architecture compatibility
- 4. Electrification benefits other than efficiency or control performance
- 5. Ability to demonstratesarchitecture's unique potential (E.g. multi-DoF with different pressure equirements)
- 6. Canbenefitfrom a commonprime mover
- 7. Too high power to be electrified directly
- 8. Commercialfeasibility
- 9. Availability of information from OEM



### Selection Criteria for Hydraulic pump/motor Topology for integration with e-machine

| Criteria                           | Description                                                                                                       |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Low Pump displacement scalability  | As the pump displacement (size) gets smaller, how does the pump perform                                           |
| High pump displacement scalability | As the pump displacement (size) gets bigger, how does the pump perform                                            |
| Maximum speed capability           | Does the pump have the potential to run at high speeds                                                            |
| Displacement Density               | How much fluid is displaced for a given packaging mass (mass can't become too large for most mobile applications) |
| Cost                               | Dollar amount                                                                                                     |
| Volumetric eff @ high pressure     | How volumetrically efficient is the system at high pressure                                                       |
| Mechanical eff @ low speed         | How mechanically efficient the system is at low speed                                                             |
| Mechanical eff @ high speed        | How mechanically efficient the system is at high speed                                                            |
| Ease of integration                | How easy can the pump become electrically integrated                                                              |
| Ease of valves                     | How easy can the pump have active valves                                                                          |
| Stick-Slip @ low speed             | How noticeable is the stick-slip behavior of the pump at very low speeds                                          |
| Wear and reliability               | How much wear occurs within the pump                                                                              |
| Noise                              | How loud is the pump/motor                                                                                        |

